Tame geometry and extensions of functions – Kraków in honour of Pawłucki's 70th birthday

C^m EXTENSIONS OF SEMIALGEBRAIC FUNCTIONS

Joint work with E. BIERSTONE and P.D. MILMAN

Jean-Baptiste Campesato

June 26, 2025

Recall the two problems discussed in Charles Fefferman's talk.

Whitney's extension problem

Let $X \subset \mathbb{R}^n$ be closed and $f : X \to \mathbb{R}$. How to determine whether there exists a C^m function $F : \mathbb{R}^n \to \mathbb{R}$ such that $F_{1X} = f$?

The Brenner–Epstein–Fefferman–Hochster–Kollár problem

Let $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ and $f : \mathbb{R}^n \to \mathbb{R}^p$. How to determine whether the equation A(x)g(x) = f(x) admits a C^m solution $g : \mathbb{R}^n \to \mathbb{R}^q$? Recall the two problems discussed in Charles Fefferman's talk.

Whitney's extension problem

Let $X \subset \mathbb{R}^n$ be closed and $f : X \to \mathbb{R}$. How to determine whether there exists a C^m function $F : \mathbb{R}^n \to \mathbb{R}$ such that $F_{1X} = f$?

The Brenner–Epstein–Fefferman–Hochster–Kollár problem

Let $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ and $f : \mathbb{R}^n \to \mathbb{R}^p$. How to determine whether the equation A(x)g(x) = f(x) admits a C^m solution $g : \mathbb{R}^n \to \mathbb{R}^q$?

Question

If the data are semialgebraic, can we expect to obtain a semialgebraic solution ?

For instance, it is true for Whitney's extension theorem.

Theorem – Whitney 1934

Given a C^m Whitney field on a closed subset $X \subset \mathbb{R}^n$, i.e. a family $(f_{\alpha} : X \to \mathbb{R})_{\alpha \in \mathbb{N}^n}$ of continuous functions such that $|\alpha| \leq m$

$$\forall z \in X, \, \forall \alpha \in \mathbb{N}^n, \, |\alpha| \le m \implies f_{\alpha}(x) - \sum_{|\beta| \le m - |\alpha|} \frac{f_{\alpha+\beta}(y)}{\beta!} (x-y)^{\beta} = \underset{x \ni x, y \to z}{o} \left(\|x-y\|^{m-|\alpha|} \right)$$

there exists a C^m function $F : \mathbb{R}^n \to \mathbb{R}$ such that $D^{\alpha}F_{|X} = f_{\alpha}$ and F is analytic on $\mathbb{R}^n \setminus X$.

For instance, it is true for Whitney's extension theorem.

Theorem – Kurdyka–Pawłucki, 1997, 2014 Kocel-Cynk–Pawłucki–Valette, 2019

Given a semialgebraic C^m Whitney field on a closed subset $X \subset \mathbb{R}^n$, i.e. a family $(f_{\alpha} : X \to \mathbb{R})_{\alpha \in \mathbb{N}^n}$ of continuous semialgebraic functions such that $|\alpha| \le m$

$$\forall z \in X, \, \forall \alpha \in \mathbb{N}^n, \, |\alpha| \le m \implies f_{\alpha}(x) - \sum_{|\beta| \le m - |\alpha|} \frac{f_{\alpha+\beta}(y)}{\beta!} (x-y)^{\beta} = \underset{x \ni x, y \to z}{o} \left(||x-y||^{m-|\alpha|} \right),$$

there exists a C^m semialgebraic function $F : \mathbb{R}^n \to \mathbb{R}$ such that $D^{\alpha}F_{|X} = f_{\alpha}$ and F is analytic on $\mathbb{R}^n \setminus X$.

The semialgebraic Whitney extension problem

Let $f : X \to \mathbb{R}$ be a semialgebraic function where $X \subset \mathbb{R}^n$ is closed. If f admits a C^m extension $F : \mathbb{R}^n \to \mathbb{R}$, does it admit a semialgebraic C^m extension ?

The semialgebraic Brenner–Epstein–Fefferman–Hochster–Kollár problem

Let $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ and $f : \mathbb{R}^n \to \mathbb{R}^p$ be semialgebraic. If A(x)g(x) = f(x) admits a C^m solution $g : \mathbb{R}^n \to \mathbb{R}^q$, does it admit a semialgebraic C^m solution?

The semialgebraic Whitney extension problem

Let $f : X \to \mathbb{R}$ be a semialgebraic function where $X \subset \mathbb{R}^n$ is closed. If f admits a C^m extension $F : \mathbb{R}^n \to \mathbb{R}$, does it admit a semialgebraic C^m extension ?

The semialgebraic Brenner–Epstein–Fefferman–Hochster–Kollár problem

Let $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ and $f : \mathbb{R}^n \to \mathbb{R}^p$ be semialgebraic. If A(x)g(x) = f(x) admits a C^m solution $g : \mathbb{R}^n \to \mathbb{R}^q$, does it admit a semialgebraic C^m solution ?

Some positive results:

- Aschenbrenner–Thamrongthanyalak (2019): for m = 1 (for Glaeser bundles).
- Fefferman–Luli (2022): for n = 2 (for Glaeser bundles).
- Bierstone–C.–Milman (2021): $\forall n, \forall m$, with loss of differentiability.
- Parusiński–Rainer (2024): for the C^{1,\u03c0} extension problem.

• Set
$$S \coloneqq \left\{ (x, y, v) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n : \begin{array}{l} x \in X, \ y = f(x), \\ \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall a, b \in B_{\delta}(x), \ |f(b) - f(a) - v \cdot (b - a)| \le \varepsilon ||b - a|| \end{array} \right\}$$

Let $f : X \to \mathbb{R}$ be a semialgebraic function, $X \subset \mathbb{R}^n$ closed, admitting a C^1 extension $F : \mathbb{R}^n \to \mathbb{R}$.

• Set
$$S := \left\{ (x, y, v) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n : \begin{array}{l} x \in X, \ y = f(x), \\ \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall a, b \in B_{\delta}(x), \ |f(b) - f(a) - v \cdot (b - a)| \le \varepsilon ||b - a|| \end{array} \right\}$$

• Then *S* is semialgebraic,

Let $f : X \to \mathbb{R}$ be a semialgebraic function, $X \subset \mathbb{R}^n$ closed, admitting a C^1 extension $F : \mathbb{R}^n \to \mathbb{R}$.

• Set
$$S := \left\{ (x, y, v) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n : \begin{array}{l} x \in X, \ y = f(x), \\ \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall a, b \in B_{\delta}(x), \ |f(b) - f(a) - v \cdot (b - a)| \le \varepsilon ||b - a|| \end{array} \right\}$$

• Then *S* is semialgebraic, and, $\forall x \in X$, $(x, F(x), \nabla F(x)) \in S$.

- Set $S \coloneqq \left\{ (x, y, v) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \ : \ \begin{array}{l} x \in X, \ y = f(x), \\ \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall a, b \in B_{\delta}(x), \ |f(b) f(a) v \cdot (b a)| \le \varepsilon ||b a|| \end{array} \right\}.$
- Then *S* is semialgebraic, and, $\forall x \in X$, $(x, F(x), \nabla F(x)) \in S$.
- By a semialgebraic version of Michael's selection lemma: there exists $\sigma : X \to S$ a semialgebraic continuous section (i.e. $\pi_x \circ \sigma = id$).

- Set $S \coloneqq \left\{ (x, y, v) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \ : \ \begin{array}{l} x \in X, \ y = f(x), \\ \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall a, b \in B_{\delta}(x), \ |f(b) f(a) v \cdot (b a)| \le \varepsilon ||b a|| \end{array} \right\}.$
- Then *S* is semialgebraic, and, $\forall x \in X$, $(x, F(x), \nabla F(x)) \in S$.
- By a semialgebraic version of Michael's selection lemma: there exists σ : X → S a semialgebraic continuous section (i.e. π_x ∘ σ = id).
- Set $G \coloneqq \pi_v \circ \sigma : X \to \mathbb{R}^n$.

- Set $S \coloneqq \left\{ (x, y, v) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \ : \ \begin{array}{l} x \in X, \ y = f(x), \\ \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall a, b \in B_{\delta}(x), \ |f(b) f(a) v \cdot (b a)| \le \varepsilon ||b a|| \end{array} \right\}.$
- Then *S* is semialgebraic, and, $\forall x \in X$, $(x, F(x), \nabla F(x)) \in S$.
- By a semialgebraic version of Michael's selection lemma: there exists σ : X → S a semialgebraic continuous section (i.e. π_x ∘ σ = id).
- Set $G \coloneqq \pi_v \circ \sigma : X \to \mathbb{R}^n$.
- Then G is semialgebraic, continuous and satisfies $\forall c \in X, f(b) = f(a) + G(a) \cdot (b a) + o_{X=a,b=0}(||b a||).$

- Set $S \coloneqq \left\{ (x, y, v) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \ : \ \begin{array}{l} x \in X, \ y = f(x), \\ \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall a, b \in B_{\delta}(x), \ |f(b) f(a) v \cdot (b a)| \le \varepsilon ||b a|| \end{array} \right\}.$
- Then *S* is semialgebraic, and, $\forall x \in X$, $(x, F(x), \nabla F(x)) \in S$.
- By a semialgebraic version of Michael's selection lemma: there exists σ : X → S a semialgebraic continuous section (i.e. π_x ∘ σ = id).
- Set $G \coloneqq \pi_v \circ \sigma : X \to \mathbb{R}^n$.
- Then *G* is semialgebraic, continuous and satisfies $\forall c \in X, f(b) = f(a) + G(a) \cdot (b-a) + \underset{X \ni a, b \to c}{o} (||b-a||).$
- We conclude with the semialgebraic Whitney extension theorem.

Let $f : X \to \mathbb{R}$ be a semialgebraic function, $X \subset \mathbb{R}^n$ closed, admitting a C^1 extension $F : \mathbb{R}^n \to \mathbb{R}$.

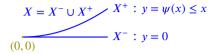
- Set $S \coloneqq \left\{ (x, y, v) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \ : \ \begin{array}{l} x \in X, \ y = f(x), \\ \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall a, b \in B_{\delta}(x), \ |f(b) f(a) v \cdot (b a)| \le \varepsilon ||b a|| \end{array} \right\}.$
- Then *S* is semialgebraic, and, $\forall x \in X$, $(x, F(x), \nabla F(x)) \in S$.
- By a semialgebraic version of Michael's selection lemma: there exists σ : X → S a semialgebraic continuous section (i.e. π_x ∘ σ = id).
- Set $G \coloneqq \pi_v \circ \sigma : X \to \mathbb{R}^n$.
- Then *G* is semialgebraic, continuous and satisfies $\forall c \in X, f(b) = f(a) + G(a) \cdot (b-a) + \underset{X \ni a, b \to c}{o} (||b-a||).$
- We conclude with the semialgebraic Whitney extension theorem.

This strategy does not generalise when m > 1 since the unknown $(f_{\alpha})_{\alpha \in \mathbb{N}^{n} \setminus \{0\}}$ can't be described as a section of a set written using a first order formula. For instance, if m = 2, we must have

$$f_{\mathbf{e}_{i}}(b) = f_{\mathbf{e}_{i}}(a) + \sum_{j=1}^{n} f_{\mathbf{e}_{i}+\mathbf{e}_{j}}(a)(b_{j}-a_{j}) + \underset{X \ni a, b \to c}{o}(||b-a||).$$

The planar semialgebraic extension problem (Fefferman-Luli, 2021)

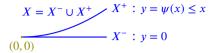
Let $f : X \to \mathbb{R}$ be semialgebraic where X is as on the right. Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a C^m function such that $F_{|X} = f$ and $J_{(0,0)}F = 0$.



The planar semialgebraic extension problem (Fefferman-Luli, 2021)

Let $f : X \to \mathbb{R}$ be semialgebraic where X is as on the right. Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a C^m function such that $F_{|X} = f$ and $J_{(0,0)}F = 0$.

1 Set $f_l^-(x) \coloneqq \partial_y^l F(x, 0)$ and $f_l^+(x) \coloneqq \partial_y^l F(x, \psi(x))$.



The planar semialgebraic extension problem (Fefferman–Luli, 2021)

Let $f : X \to \mathbb{R}$ be semialgebraic where X is as on the right. Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a C^m function such that $F_{|X} = f$ and $J_{(0,0)}F = 0$. 1 Set $f_l^-(x) \coloneqq \partial_y^l F(x, 0)$ and $f_l^+(x) \coloneqq \partial_y^l F(x, \psi(x))$. Then

$$X = X^{-} \cup X^{+} \qquad X^{+} : y = \psi(x) \le x$$
(0,0)
$$X^{-} : y = 0$$

$$(*) \begin{cases} (i) & f_0^{-}(x) = f(x,0) \\ (ii) & f_0^{+}(x) = f(x,\psi(x)) \\ (iii) & f_l^{+}(x) = \sum_{k=0}^{m-l} \frac{\psi(x)^k}{k!} f_{l+k}^{-}(x) + \sum_{x \to 0^+} (\psi(x)^{m-l}) \\ (iv) & f_l^{-}(x) = \sum_{x \to 0^+} (x^{m-l}) \\ (v) & f_l^{+}(x) = \sum_{x \to 0^+} (x^{m-l}) \end{cases}$$

The planar semialgebraic extension problem (Fefferman-Luli, 2021)

Let $f : X \to \mathbb{R}$ be semialgebraic where X is as on the right. Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a C^m function such that $F_{|X} = f$ and $J_{(0,0)}F = 0$. 1 Set $f_l^{-}(x) \coloneqq \partial_y^l F(x, 0)$ and $f_l^+(x) \coloneqq \partial_y^l F(x, \psi(x))$. Then

$$X = X^{-} \cup X^{+} \qquad X^{+} : y = \psi(x) \le x$$
(0, 0)
$$X^{-} : y = 0$$

$$(*) \begin{cases} (i) & f_0^{-}(x) = f(x,0) \\ (ii) & f_0^{+}(x) = f(x,\psi(x)) \\ (iii) & f_l^{+}(x) = \sum_{k=0}^{m-l} \frac{\psi(x)^k}{k!} f_{l+k}^{-}(x) + \mathop{o}_{x \to 0^+} \left(\psi(x)^{m-l}\right) \\ (iv) & f_l^{-}(x) = \mathop{o}_{x \to 0^+} \left(x^{m-l}\right) \\ (v) & f_l^{+}(x) = \mathop{o}_{x \to 0^+} \left(x^{m-l}\right) \end{cases}$$

2 According to the definable choice: there exist \tilde{f}_{I}^{\pm} semialgebraic satisfying (*).

The planar semialgebraic extension problem (Fefferman-Luli, 2021)

Let $f : X \to \mathbb{R}$ be semialgebraic where X is as on the right. Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a C^m function such that $F_{|X} = f$ and $J_{(0,0)}F = 0$. 1 Set $f_l^{-}(x) \coloneqq \partial_y^l F(x, 0)$ and $f_l^+(x) \coloneqq \partial_y^l F(x, \psi(x))$. Then

$$X = X^{-} \cup X^{+} \qquad X^{+} : y = \psi(x) \le x$$
(0,0)
$$X^{-} : y = 0$$

$$(*) \begin{cases} (i) & f_0^{-}(x) = f(x,0) \\ (ii) & f_0^{+}(x) = f(x,\psi(x)) \\ (iii) & f_l^{+}(x) = \sum_{k=0}^{m-l} \frac{\psi(x)^k}{k!} f_{l+k}^{-}(x) + \sum_{x \to 0^+} (\psi(x)^{m-l}) \\ (iv) & f_l^{-}(x) = \sum_{x \to 0^+} (x^{m-l}) \\ (v) & f_l^{+}(x) = \sum_{x \to 0^+} (x^{m-l}) \end{cases}$$

2 According to the definable choice: there exist \tilde{f}_l^{\pm} semialgebraic satisfying (*).

3 Then
$$\tilde{F}(x, y) = \theta^{-}(x, y) \left(\sum_{l=0}^{m} \frac{\tilde{f}_{l}^{-}(x)}{l!} y^{l} \right) + \theta^{+}(x, y) \left(\sum_{l=0}^{m} \frac{\tilde{f}_{l}^{+}(x)}{l!} (y - \psi(x))^{l} \right)$$
 is a semialgebraic C^{m} extension of f in a neighbourhood of the origin such that $J_{(0,0)}\tilde{F} = 0$.

Theorem – Bierstone–C.–Milman, 2021

Given $X \subset \mathbb{R}^n$ closed and semialgebraic, there exists $r : \mathbb{N} \to \mathbb{N}$ satisfying the following property: if $f : X \to \mathbb{R}$ semialgebraic admits a $C^{r(m)}$ extension, then it admits a semialgebraic C^m extension.

Theorem – Bierstone–C.–Milman, 2021

Given $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ semialgebraic, there exists $r : \mathbb{N} \to \mathbb{N}$ such that: if $F : \mathbb{R}^n \to \mathbb{R}^p$ semialgebraic may be written F(x) = A(x)G(x) where $G : \mathbb{R}^n \to \mathbb{R}^q$ is $C^{r(m)}$, then $F(x) = A(x)\tilde{G}(x)$ where $\tilde{G}(x)$ is semialgebraic and C^m .

Theorem – Bierstone–C.–Milman, 2021

Given $X \subset \mathbb{R}^n$ closed and semialgebraic, there exists $r : \mathbb{N} \to \mathbb{N}$ satisfying the following property: if $f : X \to \mathbb{R}$ semialgebraic admits a $C^{r(m)}$ extension, then it admits a semialgebraic C^m extension.

Theorem – Bierstone–C.–Milman, 2021

Given $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ semialgebraic, there exists $r : \mathbb{N} \to \mathbb{N}$ such that: if $F : \mathbb{R}^n \to \mathbb{R}^p$ semialgebraic may be written F(x) = A(x)G(x) where $G : \mathbb{R}^n \to \mathbb{R}^q$ is $C^{r(m)}$, then $F(x) = A(x)\tilde{G}(x)$ where $\tilde{G}(x)$ is semialgebraic and C^m .

The results hold for functions definable in an expansion of R by restricted quasianalytic functions and not merely semialgebraic.

The extension problem

Let $X \subset \mathbb{R}^n$ be semialgebraic and closed.

There exists φ : $M \to \mathbb{R}^n$ Nash and proper such that $X = \varphi(M)$.

Given $g : \mathbb{R}^n \to \mathbb{R}$ and $f : X \to \mathbb{R}$, we have

 $g_{|X} = f$ if and only if $\forall y \in M$, $g(\varphi(y)) = \tilde{f}(y)$

where $\tilde{f} \coloneqq f \circ \varphi$.

The extension problem

Let $X \subset \mathbb{R}^n$ be semialgebraic and closed.

There exists φ : $M \to \mathbb{R}^n$ Nash and proper such that $X = \varphi(M)$.

Given $g : \mathbb{R}^n \to \mathbb{R}$ and $f : X \to \mathbb{R}$, we have

 $g_{|X} = f$ if and only if $\forall y \in M$, $g(\varphi(y)) = \tilde{f}(y)$

where $\tilde{f} \coloneqq f \circ \varphi$.

The equation problem

Consider the equation

 $A(x)G(x) = F(x), x \in \mathbb{R}^n$.

with semialgebraic data. After composing with φ : $M \to \mathbb{R}^n$ some Nash and proper map, we reduce to

 $\tilde{A}(y)G(\varphi(y)) = \tilde{F}(y), \ y \in M$

where $\tilde{A} := A \circ \varphi$ is now Nash and $\tilde{F} := F \circ \varphi$.

 $A(x)g(\varphi(x)) = f(x)$

where

- $A : M \to \mathcal{M}_{p,q}(\mathbb{R})$ is Nash,
- φ : $M \to \mathbb{R}^n$ is Nash and proper, and,
- the unknown is $g : \mathbb{R}^n \to \mathbb{R}^q$.

Goal: if there is a $C^{r(m)}$ solution then there is a semialgebraic C^m solution.

 $A(x)g(\varphi(x)) = f(x)$

where

- $A : M \to \mathcal{M}_{p,q}(\mathbb{R})$ is Nash,
- φ : $M \to \mathbb{R}^n$ is Nash and proper, and,
- the unknown is $g : \mathbb{R}^n \to \mathbb{R}^q$.

Goal: if there is a $C^{r(m)}$ solution then there is a semialgebraic C^m solution.

Actually, we are looking for a formal solution of

 $\forall b \in \varphi(M), \, \forall a \in \varphi^{-1}(b), \, T_a^m f(\mathbf{x}) \equiv T_a^m A(\mathbf{x}) \, G(b, T_a^m \varphi(\mathbf{x})) \, \mod \, (\mathbf{x})^{m+1} \mathbb{R}[\![\mathbf{x}]\!]^p$

 $A(x)g(\varphi(x)) = f(x)$

where

- $A : M \to \mathcal{M}_{p,q}(\mathbb{R})$ is Nash,
- φ : $M \to \mathbb{R}^n$ is Nash and proper, and,
- the unknown is $g : \mathbb{R}^n \to \mathbb{R}^q$.

Goal: if there is a $C^{r(m)}$ solution then there is a semialgebraic C^m solution.

Actually, we are looking for a formal solution of

$$\forall b \in \varphi(M), \, \forall a \in \varphi^{-1}(b), \, T_a^m f(\mathbf{x}) \equiv T_a^m A(\mathbf{x}) \, G(b, T_a^m \varphi(\mathbf{x})) \, \mod \, (\mathbf{x})^{m+1} \mathbb{R}[\![\mathbf{x}]\!]^p$$

where the unknown is a semialgebraic C^m Whitney field

$$G(b, \mathbf{y}) = \sum_{\substack{|\alpha| \le m \\ j=1, \dots, q}} \frac{g_{\alpha, j}(b)}{\alpha!} \mathbf{y}^{\alpha, j} \in \left(\mathcal{C}^0(X)[\mathbf{y}] \right)^q$$

 $A(x)g(\varphi(x)) = f(x)$

where

- $A : M \to \mathcal{M}_{p,q}(\mathbb{R})$ is Nash,
- φ : $M \to \mathbb{R}^n$ is Nash and proper, and,
- the unknown is $g : \mathbb{R}^n \to \mathbb{R}^q$.

Goal: if there is a $C^{r(m)}$ solution then there is a semialgebraic C^m solution.

Actually, we are looking for a formal solution of

$$\forall b \in \varphi(M), \, \forall a \in \varphi^{-1}(b), \, T_a^m f(\mathbf{x}) \equiv T_a^m A(\mathbf{x}) \, G(b, T_a^m \varphi(\mathbf{x})) \, \mod \, (\mathbf{x})^{m+1} \mathbb{R}[\![\mathbf{x}]\!]^p$$

where the unknown is a semialgebraic C^m Whitney field

$$G(b, \mathbf{y}) = \sum_{\substack{|\alpha| \le m \\ j=1,\dots,q}} \frac{g_{\alpha,j}(b)}{\alpha!} \mathbf{y}^{\alpha,j} \in \left(C^0(X)[\mathbf{y}]\right)^q \qquad \qquad \begin{array}{l} \text{where} \\ \mathbf{y}^{\alpha} = y_1^{\alpha_1} \cdots y_n^{\alpha_n} \\ \mathbf{y}^{(\alpha,j)} = (0,\dots,0, \mathbf{y}^{\alpha}, 0,\dots,0) \end{array}$$

$$\forall b \in \varphi(M), \,\forall a \in \varphi^{-1}(b), \, T_a^m f(\mathbf{x}) \equiv T_a^m A(\mathbf{x}) \, G(b, T_a^m \varphi(\mathbf{x})) \, \mod \, (\mathbf{x})^{m+1} \mathbb{R}[\![\mathbf{x}]\!]^p \tag{E}$$

(E)

Proposition: induction on the dimension

Let $B \subset \varphi(M)$ be a semialgebraic closed subset.

There exists $B' \subset B$ semialgebraic and closed with $\dim(B') < \dim(B)$ such that if (E) admits a semialgebraic solution on B' then it admits a solution on B modulo a loss of differentiability.

Proposition: induction on the dimension

Let $B \subset \varphi(M)$ be a semialgebraic closed subset.

There exists $B' \subset B$ semialgebraic and closed with $\dim(B') < \dim(B)$ such that if (E) admits a semialgebraic solution on B' then it admits a solution on B modulo a loss of differentiability.

Strategy by successive flattening:

- **1** Construct a suitable B';
- **2** Assume that $T_a^l f(\mathbf{x}) \equiv 0$ on B';
- **3** Find a semialg solution $G(b, \mathbf{y}) \in (\mathcal{C}^0(X)[\mathbf{y}])^q$ s.t. $G_{|B'} \equiv 0$ and $G_{|B \setminus B'}$ is a \mathcal{C}^l Whitney field.

Proposition: induction on the dimension

Let $B \subset \varphi(M)$ be a semialgebraic closed subset.

There exists $B' \subset B$ semialgebraic and closed with $\dim(B') < \dim(B)$ such that if (E) admits a semialgebraic solution on B' then it admits a solution on B modulo a loss of differentiability.

Strategy by successive flattening:

- **1** Construct a suitable B';
- **2** Assume that $T_a^l f(\mathbf{x}) \equiv 0$ on B';
- **3** Find a semialg solution $G(b, \mathbf{y}) \in (\mathcal{C}^0(X)[\mathbf{y}])^q$ s.t. $G_{|B'} \equiv 0$ and $G_{|B \setminus B'}$ is a \mathcal{C}^l Whitney field.

A - Whitney regularity

Given *B*, there exists $\rho \in \mathbb{N}$ such that if *G* is a Whitney field of order $l \ge k\rho$ on $B \setminus B'$ then it is a Whitney field of order *k* on *B*.

$$\forall b \in B, \, \forall a \in \varphi^{-1}(b), \, T_a^r f(\mathbf{x}) \equiv T_a^r A(\mathbf{x}) \, G(b, T_a^r \varphi(\mathbf{x})) \, \mod \, (\mathbf{x})^{r+1} \mathbb{R}[\![\mathbf{x}]\!]^p$$

For $l \in \mathbb{N}$, there exists $r \ge l$ such that the coefficients $g_{\alpha,j}$, $|\alpha| \le l$, are entirely determined by (E).

B - Chevalley's function

For $l \in \mathbb{N}$, there exists $r \ge l$ such that the coefficients $g_{\alpha,j}$, $|\alpha| \le l$, are entirely determined by (E).

More precisely, we stratify $B = \bigsqcup_{\tau=1}^{\tau_{\max}} \Lambda_{\tau}$ such that for each τ , there exists $r \ge l$ satisfying

$$\forall b \in \Lambda_{\tau}, \ \pi_l(\mathcal{R}_r(b)) = \pi_l(\mathcal{R}_{r-1}(b))$$

where

• $\mathcal{R}_r(b)$ is the module of relations at b

 $\mathcal{R}_r(b) \coloneqq \left\{ W \in \mathbb{R}[\![\mathbf{y}]\!]^q : \forall a \in \varphi^{-1}(b), \, T_a^r A(\mathbf{x}) W\left(\tilde{T}_a^r \varphi(\mathbf{x}) \right) \equiv 0 \mod (\mathbf{x})^{r+1} \mathbb{R}[\![\mathbf{x}]\!]^p \right\}$

• π_l is the truncation up to degree *l*.

B - Chevalley's function

For $l \in \mathbb{N}$, there exists $r \ge l$ such that the coefficients $g_{\alpha,j}$, $|\alpha| \le l$, are entirely determined by (E).

More precisely, we stratify $B = \bigsqcup_{\tau=1}^{\tau_{\max}} \Lambda_{\tau}$ such that for each τ , there exists $r \ge l$ satisfying

$$\forall b \in \Lambda_{\tau}, \ \pi_l(\mathcal{R}_r(b)) = \pi_l(\mathcal{R}_{r-1}(b))$$

where

• $\mathcal{R}_r(b)$ is the module of relations at b

 $\mathcal{R}_r(b) \coloneqq \left\{ W \in \mathbb{R}[\![\mathbf{y}]\!]^q : \forall a \in \varphi^{-1}(b), \, T_a^r A(\mathbf{x}) W\left(\tilde{T}_a^r \varphi(\mathbf{x}) \right) \equiv 0 \mod (\mathbf{x})^{r+1} \mathbb{R}[\![\mathbf{x}]\!]^p \right\}$

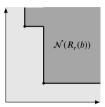
• π_l is the truncation up to degree *l*.

Set
$$B' := \bigsqcup_{\dim \Lambda_{\tau} < \dim B} \Lambda_{\tau}$$
.

We totally order $\mathbb{N}^n \times \{1, \dots, q\} \ni (\alpha, j)$ by $\text{lex}(|\alpha|, j, \alpha_1, \dots, \alpha_n)$. Then the *diagram of initial exponents* of $\mathcal{R}_r(b)$,

 $\mathcal{N}(\mathcal{R}_r(b)) \coloneqq \left\{ \exp W : W \in \mathcal{R}_r(b) \setminus \{0\} \right\} \subset \mathbb{N}^n \times \{1, \dots, q\},$

is constant on Λ_{τ} (up to refining).

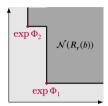


We totally order $\mathbb{N}^n \times \{1, \dots, q\} \ni (\alpha, j)$ by $\text{lex}(|\alpha|, j, \alpha_1, \dots, \alpha_n)$. Then the *diagram of initial exponents* of $\mathcal{R}_r(b)$,

 $\mathcal{N}(\mathcal{R}_r(b)) \coloneqq \left\{ \exp W \ : \ W \in \mathcal{R}_r(b) \smallsetminus \{0\} \right\} \subset \mathbb{N}^n \times \{1, \dots, q\},$

is constant on Λ_{τ} (up to refining).

Let's fix a stratum Λ_r of maximal dimension and $b \in \Lambda_r$. Let $\Phi_1, \ldots, \Phi_s \in \mathcal{R}_r(b)$ be representatives of the vertices.



We totally order $\mathbb{N}^n \times \{1, \dots, q\} \ni (\alpha, j)$ by $\text{lex}(|\alpha|, j, \alpha_1, \dots, \alpha_n)$. Then the *diagram of initial exponents* of $\mathcal{R}_r(b)$,

 $\mathcal{N}(\mathcal{R}_r(b)) \coloneqq \left\{ \exp W : W \in \mathcal{R}_r(b) \setminus \{0\} \right\} \subset \mathbb{N}^n \times \{1, \dots, q\},$

is constant on Λ_{τ} (up to refining).

Let's fix a stratum Λ_{τ} of maximal dimension and $b \in \Lambda_{\tau}$. Let $\Phi_1, \ldots, \Phi_s \in \mathcal{R}_r(b)$ be representatives of the vertices.

By the existence of a C^t solution¹, there exists $W_b \in \mathbb{R}[\mathbf{y}]^q$ such that

 $T_a^t f(\mathbf{x}) \equiv T_a^t A(\mathbf{x}) W_b(T_a^t \varphi(\mathbf{x})) \mod (\mathbf{x})^{t+1} \mathbb{R}[\![\mathbf{x}]\!]^p, \quad \forall a \in \varphi^{-1}(b).$

$\exp \Phi_2$	$\mathcal{N}(R_r(b))$
exp	Φ_1

¹not assumed to be semialgebraic and *t* to be determined.

We totally order $\mathbb{N}^n \times \{1, \dots, q\} \ni (\alpha, j)$ by $\text{lex}(|\alpha|, j, \alpha_1, \dots, \alpha_n)$. Then the *diagram of initial exponents* of $\mathcal{R}_r(b)$,

 $\mathcal{N}(\mathcal{R}_r(b)) \coloneqq \left\{ \exp W : W \in \mathcal{R}_r(b) \setminus \{0\} \right\} \subset \mathbb{N}^n \times \{1, \dots, q\},$

is constant on Λ_{τ} (up to refining).

Let's fix a stratum Λ_{τ} of maximal dimension and $b \in \Lambda_{\tau}$. Let $\Phi_1, \ldots, \Phi_s \in \mathcal{R}_r(b)$ be representatives of the vertices.

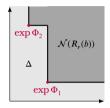
By the existence of a C^t solution¹, there exists $W_b \in \mathbb{R}[\mathbf{y}]^q$ such that

$$T_a^t f(\mathbf{x}) \equiv T_a^t A(\mathbf{x}) W_b(T_a^t \varphi(\mathbf{x})) \mod (\mathbf{x})^{t+1} \mathbb{R}[\![\mathbf{x}]\!]^p, \quad \forall a \in \varphi^{-1}(b).$$

By Hironaka's formal division, we may write

$$W_b(\mathbf{y}) = \sum_{i=1}^{s} Q_i(\mathbf{y}) \Phi_i(\mathbf{y}) + V_{\tau}(b, \mathbf{y})$$

where $Q_i \in \mathbb{R}[\![\mathbf{y}]\!], V_{\tau} \in \mathbb{R}[\![\mathbf{y}]\!]^q$ and $\operatorname{supp} V_{\tau}(b, \mathbf{y}) \subset \Delta \coloneqq \mathcal{N}(\mathcal{R}_r(b))^c$.



¹not assumed to be semialgebraic and *t* to be determined.

$$\forall b \in B, \forall a \in \varphi^{-1}(b), T_a^t f(\mathbf{x}) \equiv T_a^t A(\mathbf{x}) G(b, T_a^t \varphi(\mathbf{x})) \mod (\mathbf{x})^{t+1} \mathbb{R}[\![\mathbf{x}]\!]^p$$

 $G_{\tau}(b, \mathbf{y}) \coloneqq \pi_l \left(V_{\tau}(b, \mathbf{y}) \right) \text{ is a } \mathcal{C}^l \text{ semialgebraic Whitney field on } \Lambda_{\tau} \text{ satisfying (E).}$

 $G_{\tau}(b, \mathbf{y}) \coloneqq \pi_l \left(V_{\tau}(b, \mathbf{y}) \right)$ is a C^l semialgebraic Whitney field on Λ_{τ} satisfying (E).

Proof.

- G_{τ} is semialgebraic since it may be expressed in terms of the data.
- $G_{\tau}(b, \mathbf{y})$ satisfies (E) since it differs from $W_b(\mathbf{y})$ by an element of $\mathcal{R}_r(b)$.
- It remains to prove that G_{τ} is a C^{l} Whitney field.

 $G_{\tau}(b, \mathbf{y}) \coloneqq \pi_l \left(V_{\tau}(b, \mathbf{y}) \right)$ is a C^l semialgebraic Whitney field on Λ_{τ} satisfying (E).

Proof.

- G_{τ} is semialgebraic since it may be expressed in terms of the data.
- $G_r(b, \mathbf{y})$ satisfies (E) since it differs from $W_b(\mathbf{y})$ by an element of $\mathcal{R}_r(b)$.
- It remains to prove that G_{τ} is a C^{l} Whitney field. To simplify the situation, we omit φ .

 $G_{\tau}(b, \mathbf{y}) \coloneqq \pi_l \left(V_{\tau}(b, \mathbf{y}) \right)$ is a C^l semialgebraic Whitney field on Λ_{τ} satisfying (E).

Proof.

- G_{τ} is semialgebraic since it may be expressed in terms of the data.
- $G_{\tau}(b, \mathbf{y})$ satisfies (E) since it differs from $W_b(\mathbf{y})$ by an element of $\mathcal{R}_r(b)$.
- It remains to prove that G_{τ} is a C^{l} Whitney field. To simplify the situation, we omit φ . $T_{a}^{r}f(\mathbf{y}) \equiv T_{a}^{r}A(\mathbf{y}) V_{\tau}(b, \mathbf{y}) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^{p}$

 $G_{\tau}(b, \mathbf{y}) \coloneqq \pi_l \left(V_{\tau}(b, \mathbf{y}) \right)$ is a C^l semialgebraic Whitney field on Λ_{τ} satisfying (E).

Proof.

- G_{τ} is semialgebraic since it may be expressed in terms of the data.
- $G_{\tau}(b, \mathbf{y})$ satisfies (E) since it differs from $W_b(\mathbf{y})$ by an element of $\mathcal{R}_r(b)$.
- It remains to prove that G_{τ} is a C^{l} Whitney field. To simplify the situation, we omit φ . $D_{b,v} - D_{\mathbf{y},v} \int_{0}^{T_{a}^{r}f(\mathbf{y})} \equiv T_{a}^{r}A(\mathbf{y}) V_{\tau}(b, \mathbf{y}) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^{p}$ $0 \equiv T_{a}^{r}A(\mathbf{y}) \left(D_{b,v}V_{\tau}^{r-1}(b, \mathbf{y}) - D_{\mathbf{y},v}V_{\tau}(b, \mathbf{y}) \right) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^{p}$

 $G_{\tau}(b, \mathbf{y}) \coloneqq \pi_l \left(V_{\tau}(b, \mathbf{y}) \right)$ is a C^l semialgebraic Whitney field on Λ_{τ} satisfying (E).

Proof.

- G_{τ} is semialgebraic since it may be expressed in terms of the data.
- $G_{\tau}(b, \mathbf{y})$ satisfies (E) since it differs from $W_b(\mathbf{y})$ by an element of $\mathcal{R}_r(b)$.
- It remains to prove that G_{τ} is a C^{l} Whitney field. To simplify the situation, we omit φ . $D_{b,v} - D_{\mathbf{y},v} \begin{pmatrix} T_{a}^{r} f(\mathbf{y}) \equiv T_{a}^{r} A(\mathbf{y}) V_{\tau}(b, \mathbf{y}) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^{p} \\ 0 \equiv T_{a}^{r} A(\mathbf{y}) \left(D_{b,v} V_{\tau}^{r-1}(b, \mathbf{y}) - D_{\mathbf{y},v} V_{\tau}(b, \mathbf{y}) \right) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^{p} \\ D_{b,v} V_{\tau}^{r-1}(b, \mathbf{y}) - D_{\mathbf{y},v} V_{\tau}(b, \mathbf{y}) \in \mathcal{R}_{r-1}(b)$

 $G_{\tau}(b, \mathbf{y}) \coloneqq \pi_l \left(V_{\tau}(b, \mathbf{y}) \right)$ is a C^l semialgebraic Whitney field on Λ_{τ} satisfying (E).

Proof.

- G_{τ} is semialgebraic since it may be expressed in terms of the data.
- $G_r(b, \mathbf{y})$ satisfies (E) since it differs from $W_b(\mathbf{y})$ by an element of $\mathcal{R}_r(b)$.

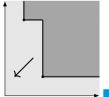
• It remains to prove that
$$G_{\tau}$$
 is a C^{l} Whitney field. To simplify the situation, we omit φ .
 $D_{b,v} - D_{\mathbf{y},v} \int_{\bullet} T_{a}^{r} f(\mathbf{y}) \equiv T_{a}^{r} A(\mathbf{y}) V_{\tau}(b, \mathbf{y}) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^{p}$
 $0 \equiv T_{a}^{r} A(\mathbf{y}) \left(D_{b,v} V_{\tau}^{r-1}(b, \mathbf{y}) - D_{\mathbf{y},v} V_{\tau}(b, \mathbf{y}) \right) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^{p}$
 $D_{b,v} V_{\tau}^{r-1}(b, \mathbf{y}) - D_{\mathbf{y},v} V_{\tau}(b, \mathbf{y}) \in \mathcal{R}_{r-1}(b)$
 $D_{b,v} G_{\tau}^{l-1}(b, \mathbf{y}) - D_{\mathbf{y},v} G_{\tau}(b, \mathbf{y}) \in \pi_{l-1}(\mathcal{R}_{r-1}(b)) = \pi_{l-1}(\mathcal{R}_{r}(b))$

 $G_{\tau}(b, \mathbf{y}) \coloneqq \pi_l \left(V_{\tau}(b, \mathbf{y}) \right)$ is a C^l semialgebraic Whitney field on Λ_{τ} satisfying (E).

Proof.

- G_{τ} is semialgebraic since it may be expressed in terms of the data.
- $G_r(b, \mathbf{y})$ satisfies (E) since it differs from $W_b(\mathbf{y})$ by an element of $\mathcal{R}_r(b)$.

• It remains to prove that
$$G_{\tau}$$
 is a C^{l} Whitney field. To simplify the situation, we omit φ .
 $D_{b,v} - D_{\mathbf{y},v} \begin{pmatrix} T_{a}^{r} f(\mathbf{y}) \equiv T_{a}^{r} A(\mathbf{y}) V_{\tau}(b, \mathbf{y}) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^{p} \\ 0 \equiv T_{a}^{r} A(\mathbf{y}) \left(D_{b,v} V_{\tau}^{r-1}(b, \mathbf{y}) - D_{\mathbf{y},v} V_{\tau}(b, \mathbf{y}) \right) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^{p} \\ D_{b,v} V_{\tau}^{r-1}(b, \mathbf{y}) - D_{\mathbf{y},v} V_{\tau}(b, \mathbf{y}) \in \mathcal{R}_{r-1}(b) \\ D_{b,v} G_{\tau}^{l-1}(b, \mathbf{y}) - D_{\mathbf{y},v} G_{\tau}(b, \mathbf{y}) \in \pi_{l-1}(\mathcal{R}_{r-1}(b)) = \pi_{l-1}(\mathcal{R}_{r}(b)) \\ D_{b,v} G_{\tau}^{l-1}(b, \mathbf{y}) - D_{\mathbf{y},v} G_{\tau}(b, \mathbf{y}) = 0$



$$\forall b \in B, \forall a \in \varphi^{-1}(b), T_a^t f(\mathbf{x}) \equiv T_a^t A(\mathbf{x}) G(b, T_a^t \varphi(\mathbf{x})) \mod (\mathbf{x})^{t+1} \mathbb{R}[\![\mathbf{x}]\!]^p$$

C - gluing between strata using Łojasiewicz inequality

 $\text{There exists } \boldsymbol{\sigma} \in \mathbb{N} \text{ such that if } t \geq r + \boldsymbol{\sigma} \text{ then } \lim_{b \to \overline{\Lambda_{\tau}} \smallsetminus \Lambda_{\tau}} G_{\tau}(b, \mathbf{y}) = 0.$

Note that $\overline{\Lambda_{\tau}} \smallsetminus \Lambda_{\tau} \subset B'$.

Summary: loss of differentiability

For $k \in \mathbb{N}$, we set $l \ge k\rho$, then $r \ge l$ and finally $t \ge r + \sigma$ where

- A. ρ is an upper bound of Whitney's loss of differentiability (induction step).
- B. r is an upper bound of the Chevalley functions on the various strata.
- C. σ is an upper bound of Łojasiewicz's loss of differentiability on each stratum.

Conclusion.

Assuming the existence of a C^t solution, we constructed a semialgebraic solution of (E)

 $G(b, \mathbf{y}) \in \left(\mathcal{C}^0(B)[\mathbf{y}] \right)^q$

such that *G* is a C^l Whitney field on $B \setminus B'$ and $G_{|B'} = 0$. Therefore *G* is a semialgebraic C^k Whitney field on *B*.