Uniwersytet Jagielloński w Krakowie Teoria Osobliwości Seminarium

C^m SOLUTIONS OF SEMIALGEBRAIC EQUATIONS

Joint work with E. BIERSTONE and P.D. MILMAN

Jean-Baptiste Campesato

December 10, 2020

Motivations – Whitney's Extension Problem

Whitney's Extension Problem

Let $X \subset \mathbb{R}^n$ be closed and $f : X \to \mathbb{R}$. Under which assumptions does f admit a C^m extension? (i.e. $\exists F : \mathbb{R}^n \to \mathbb{R}$ which is C^m and such that $F_{\downarrow X} = f$)

Motivations – Whitney's Extension Problem

Whitney's Extension Problem

Let $X \subset \mathbb{R}^n$ be closed and $f : X \to \mathbb{R}$. Under which assumptions does f admit a C^m extension? (i.e. $\exists F : \mathbb{R}^n \to \mathbb{R}$ which is C^m and such that $F_{\downarrow X} = f$)

C. Fefferman, 2006

Characterization of functions $f : X \to \mathbb{R}$ admitting a C^m extension.

Motivations – Whitney's Extension Problem

Whitney's Extension Problem

Let $X \subset \mathbb{R}^n$ be closed and $f : X \to \mathbb{R}$. Under which assumptions does f admit a C^m extension? (i.e. $\exists F : \mathbb{R}^n \to \mathbb{R}$ which is C^m and such that $F_{\downarrow X} = f$)

C. Fefferman, 2006

Characterization of functions $f : X \to \mathbb{R}$ admitting a C^m extension.

Geometric version of Whitney's Extension Problem

If the data are semialgebraic, does f admit an extension preserving this condition?

Motivations – Whitney's Extension Problem

Theorem – Whitney, 1934

Let $X \subset \mathbb{R}^n$ be closed. Consider a family $(f_{\alpha} : X \to \mathbb{R})_{\alpha \in \mathbb{N}^n}$ of continuous functions such that $|\alpha| \leq m$

$$\forall z \in X, \, \forall \alpha \in \mathbb{N}^n, \, |\alpha| \le m \implies f_{\alpha}(x) - \sum_{|\beta| \le m - |\alpha|} \frac{f_{\alpha+\beta}(y)}{\beta!} (x-y)^{\beta} = \mathop{o}_{X \ni x, y \to z} \left(\|x-y\|^{m-|\alpha|} \right) \tag{1}$$

then there exists a C^m function $F : \mathbb{R}^n \to \mathbb{R}$ such that $D^{\alpha}F = f_{\alpha}$ on X (and F is C^{ω} on $\mathbb{R}^n \setminus X$).

Such a family $(f_{\alpha} : X \to \mathbb{R})_{\alpha \in \mathbb{N}^n, |\alpha| \le m}$ of continuous functions satisfying (1) is called a *Whitney* field of order *m* on *X*.

Motivations – Whitney's Extension Problem

Theorem – Whitney, 1934

Let $X \subset \mathbb{R}^n$ be closed. Consider a family $(f_{\alpha} : X \to \mathbb{R})_{\alpha \in \mathbb{N}^n}$ of continuous functions such that $|\alpha| \leq m$

$$\forall z \in X, \, \forall \alpha \in \mathbb{N}^n, \, |\alpha| \le m \implies f_{\alpha}(x) - \sum_{|\beta| \le m - |\alpha|} \frac{f_{\alpha+\beta}(y)}{\beta!} (x-y)^{\beta} = \mathop{o}_{X \ni x, y \to z} \left(\|x-y\|^{m-|\alpha|} \right) \tag{1}$$

then there exists a C^m function $F : \mathbb{R}^n \to \mathbb{R}$ such that $D^{\alpha}F = f_{\alpha}$ on X (and F is C^{ω} on $\mathbb{R}^n \setminus X$).

Such a family $(f_{\alpha} : X \to \mathbb{R})_{\alpha \in \mathbb{N}^n, |\alpha| \le m}$ of continuous functions satisfying (1) is called a *Whitney field of order m on X*.

Theorem – Kurdyka–Pawłucki, 1997, 2014 – Thamrongthanyalak, 2017

If the set *X* and the functions f_{α} are definable in an *o*-minimal structure then we may assume that *F* is definable too (and C^q on $\mathbb{R}^n \setminus X$ for $q \ge m$).

Motivations	The results	The proof
0000		

1 Let $f_1, \ldots, f_r \in \mathbb{R}[x_1, \ldots, x_n]$. Which functions $\varphi : \mathbb{R}^n \to \mathbb{R}$ may be expressed as $\varphi = \sum \varphi_i f_i$ with $\varphi_i \in C^0(\mathbb{R}^n, \mathbb{R})$?

Motivations
00000

Motivations – The Brenner–Fefferman–Hochster–Kollár problem

- **1** Let $f_1, \ldots, f_r \in \mathbb{R}[x_1, \ldots, x_n]$. Which functions $\varphi : \mathbb{R}^n \to \mathbb{R}$ may be expressed as $\varphi = \sum \varphi_i f_i$ with $\varphi_i \in C^0(\mathbb{R}^n, \mathbb{R})$?
- 2 Let $f_1, \ldots, f_r \in \mathbb{R}[x_1, \ldots, x_n]$. Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ satisfying some property. If $\varphi = \sum_{i=1}^r \varphi_i f_i$ where $\varphi_i \in C^0(\mathbb{R}^n, \mathbb{R})$, does there exist $\tilde{\varphi}_i$ with the above property s.t. $\varphi = \sum_{i=1}^r \tilde{\varphi}_i f_i$?

Motivations	
00000	

1 Let $f_1, \ldots, f_r \in \mathbb{R}[x_1, \ldots, x_n]$. Which functions $\varphi : \mathbb{R}^n \to \mathbb{R}$ may be expressed as $\varphi = \sum \varphi_i f_i$ with $\varphi_i \in C^0(\mathbb{R}^n, \mathbb{R})$?

2 Let
$$f_1, \ldots, f_r \in \mathbb{R}[x_1, \ldots, x_n]$$
. Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ satisfying some property.
If $\varphi = \sum_{i=1}^r \varphi_i f_i$ where $\varphi_i \in C^0(\mathbb{R}^n, \mathbb{R})$, does there exist $\tilde{\varphi}_i$ with the above property s.t. $\varphi = \sum_{i=1}^r \tilde{\varphi}_i f_i$?

- Fefferman–Kollár (2013) polynomial data: Continuous solution ⇒ semialgebraic continuous solution.
- Kucharz–Kurdyka (2017) regulous data on a *surface*: Continuous solution ⇒ regulous solution.

1 Let $f_1, \ldots, f_r \in \mathbb{R}[x_1, \ldots, x_n]$. Which functions $\varphi : \mathbb{R}^n \to \mathbb{R}$ may be expressed as $\varphi = \sum \varphi_i f_i$ with $\varphi_i \in C^0(\mathbb{R}^n, \mathbb{R})$?

2 Let
$$f_1, \ldots, f_r \in \mathbb{R}[x_1, \ldots, x_n]$$
. Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ satisfying some property.
If $\varphi = \sum_{i=1}^r \varphi_i f_i$ where $\varphi_i \in C^0(\mathbb{R}^n, \mathbb{R})$, does there exist $\tilde{\varphi}_i$ with the above property s.t. $\varphi = \sum_{i=1}^r \tilde{\varphi}_i f_i$?

- Fefferman–Kollár (2013) polynomial data: Continuous solution ⇒ semialgebraic continuous solution.
- Kucharz–Kurdyka (2017) regulous data on a *surface*: Continuous solution ⇒ regulous solution.
- Kollár–Nowak (2015) polynomial data: Continuous solution *⇒* regulous solution.
- Adamus–Seyedinejad (2018) polynomial data: Continuous solution ⇒ arc-analytic semialgebraic solution.

The Brenner–Fefferman–Hochster–Kollár problem

Under which assumptions, does an equation $\varphi = \sum \varphi_i f_i$ admit a C^m solution?

The Brenner–Fefferman–Hochster–Kollár problem

Under which assumptions, does an equation $\varphi = \sum \varphi_i f_i$ admit a C^m solution?

Fefferman–Luli, 2014

Characterization of such equations admitting a C^m solution.

The Brenner–Fefferman–Hochster–Kollár problem

Under which assumptions, does an equation $\varphi = \sum \varphi_i f_i$ admit a C^m solution?

Fefferman–Luli, 2014

Characterization of such equations admitting a C^m solution.

Geometric version of the Brenner–Fefferman–Hochster–Kollár problem

If the data are semialgebraic, does the equation admit a C^m solution preserving this condition?

Questions: are there solutions preserving semialgebraicity?

Question

Let $X \subset \mathbb{R}^n$ be semialgebraic and closed. Let $f : X \to \mathbb{R}$ be semialgebraic. If *f* admits a C^m extension, does it admit a semialgebraic C^m extension?

Question

Let $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ and $f : \mathbb{R}^n \to \mathbb{R}^p$ be semialgebraic. If there exists a \mathcal{C}^m function $g : \mathbb{R}^n \to \mathbb{R}^q$ such that f(x) = A(x)g(x), then does there exist a semialgebraic \mathcal{C}^m function $\tilde{g} : \mathbb{R}^n \to \mathbb{R}^q$ such that $f(x) = A(x)\tilde{g}(x)$?

Questions: are there solutions preserving semialgebraicity?

Question

Let $X \subset \mathbb{R}^n$ be semialgebraic and closed. Let $f : X \to \mathbb{R}$ be semialgebraic. If *f* admits a C^m extension, does it admit a semialgebraic C^m extension?

Question

Let $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ and $f : \mathbb{R}^n \to \mathbb{R}^p$ be semialgebraic. If there exists a C^m function $g : \mathbb{R}^n \to \mathbb{R}^q$ such that f(x) = A(x)g(x), then does there exist a semialgebraic C^m function $\tilde{g} : \mathbb{R}^n \to \mathbb{R}^q$ such that $f(x) = A(x)\tilde{g}(x)$?

- Aschenbrenner–Thamrongthanyalak (2019): $\forall n$ but resp. m = 1 and m = 0.
- Fefferman–Luli (in preparation): $\forall m$ but n = 2.

Questions: are there solutions preserving semialgebraicity?

Question

Let $X \subset \mathbb{R}^n$ be semialgebraic and closed. Let $f : X \to \mathbb{R}$ be semialgebraic. If f admits a C^m extension, does it admit a semialgebraic C^m extension?

Question

Let $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ and $f : \mathbb{R}^n \to \mathbb{R}^p$ be semialgebraic. If there exists a C^m function $g : \mathbb{R}^n \to \mathbb{R}^q$ such that f(x) = A(x)g(x), then does there exist a semialgebraic C^m function $\tilde{g} : \mathbb{R}^n \to \mathbb{R}^q$ such that $f(x) = A(x)\tilde{g}(x)$?

- Aschenbrenner–Thamrongthanyalak (2019): $\forall n$ but resp. m = 1 and m = 0.
- Fefferman–Luli (in preparation): $\forall m$ but n = 2.
- Bierstone–C.–Milman (2020): $\forall n, \forall m$, but with a loss of differentiability.

Presentation of the results

Theorem – Bierstone–C.–Milman, 2020

Given $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ semialgebraic, there exists $r : \mathbb{N} \to \mathbb{N}$ such that: If $F : \mathbb{R}^n \to \mathbb{R}^p$ semialgebraic may be written F(x) = A(x)G(x) where *G* is $C^{r(m)}$, then $F(x) = A(x)\tilde{G}(x)$ where $\tilde{G}(x)$ is semialgebraic and C^m .

Presentation of the results

Theorem – Bierstone–C.–Milman, 2020

Given $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ semialgebraic, there exists $r : \mathbb{N} \to \mathbb{N}$ such that: If $F : \mathbb{R}^n \to \mathbb{R}^p$ semialgebraic may be written F(x) = A(x)G(x) where *G* is $C^{r(m)}$, then $F(x) = A(x)\tilde{G}(x)$ where $\tilde{G}(x)$ is semialgebraic and C^m .

Besides, if *A* is C^{∞} then $r(m) = \alpha m + \beta$.

Presentation of the results

Theorem – Bierstone–C.–Milman, 2020

Given $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ semialgebraic, there exists $r : \mathbb{N} \to \mathbb{N}$ such that: If $F : \mathbb{R}^n \to \mathbb{R}^p$ semialgebraic may be written F(x) = A(x)G(x) where *G* is $C^{r(m)}$, then $F(x) = A(x)\tilde{G}(x)$ where $\tilde{G}(x)$ is semialgebraic and C^m .

Besides, if *A* is C^{∞} then $r(m) = \alpha m + \beta$.

Theorem – Bierstone–C.–Milman, 2020

Given $X \subset \mathbb{R}^n$ closed and semialgebraic, there exists $r : \mathbb{N} \to \mathbb{N}$ satisfying the following property: if $f : X \to \mathbb{R}$ is semialgebraic and admits a $C^{r(m)}$ extension, then it admits a C^m extension which is semialgebraic.

Presentation of the results - A common generalization

The equation problem

Consider an equation

 $\forall x \in \mathbb{R}^n, A(x)G(x) = F(x)$

By resolution of singularities, there exists $\varphi: M \to \mathbb{R}^n$ Nash and proper defined on a Nash manifold such that after composition, we get an equation

$$\forall y \in M, \ \tilde{A}(y)G(\varphi(y)) = \tilde{F}(y)$$

where \tilde{A} is now Nash.

Presentation of the results - A common generalization

The equation problem	The extension problem
Consider an equation	Let $X \subset \mathbb{R}^n$ be semialgebraic and closed.
$\forall x \in \mathbb{R}^n, A(x)G(x) = F(x)$ By resolution of singularities, there exists $\varphi : M \to \mathbb{R}^n$ Nash and proper defined on a Nash manifold such that after composition, we get an	By resolution of singularities, there exists $\varphi : M \to \mathbb{R}^n$ Nash and proper defined on a Nash manifold such that $X = \varphi(M)$.
equation $\forall y \in M, \ \tilde{A}(y)G(\varphi(y)) = \tilde{F}(y)$	Given $g : \mathbb{R}^n \to \mathbb{R}$ and $f : X \to \mathbb{R}$, we have $g_{ X} = f$ if and only if $\forall y \in M, g(\varphi(y)) = \tilde{f}(y)$
where $ ilde{A}$ is now Nash.	where $\tilde{f} = f \circ \varphi$.

The results ○○●

Presentation of the results - The main result

Theorem – Bierstone–C.–Milman, 2020

Let $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ be Nash and let $\varphi : M \to \mathbb{R}^n$ be Nash and proper defined on $M \subset \mathbb{R}^N$ a Nash submanifold. There exists $r : \mathbb{N} \to \mathbb{N}$ satisfying the following property. If $f : M \to \mathbb{R}^p$ semialgebraic may be written

 $f(x) = A(x)g(\varphi(x))$

for a $C^{r(m)}$ function $g : \mathbb{R}^n \to \mathbb{R}^q$ then

 $f(x) = A(x)\tilde{g}(\varphi(x))$

for a semialgebraic C^m function \tilde{g} .

Heart of the proof: induction on dimension

Proposition: the induction step

Let $B \subset \varphi(M)$ be semialgebraic and closed. There exist $B' \subset B$ semialgebraic satisfying dim $B' < \dim B$ and $t : \mathbb{N} \to \mathbb{N}$ such that if **1** $f : M \to \mathbb{R}^p$ is $C^{t(k)}$, semialgebraic and t(k)-flat on $\varphi^{-1}(B')$, and **2** $f = A \cdot (g \circ \varphi)$ admits a $C^{t(k)}$ solution g, then there exists a semialgebraic C^k function $\tilde{g} : \mathbb{R}^n \to \mathbb{R}^q$ s.t. $f - A \cdot (\tilde{g} \circ \varphi)$ is k-flat on $\varphi^{-1}(B)$.

Heart of the proof: induction on dimension

Proposition: the induction step

Let $B \subset \varphi(M)$ be semialgebraic and closed. There exist $B' \subset B$ semialgebraic satisfying dim $B' < \dim B$ and $t : \mathbb{N} \to \mathbb{N}$ such that if **1** $f : M \to \mathbb{R}^p$ is $C^{t(k)}$, semialgebraic and t(k)-flat on $\varphi^{-1}(B')$, and **2** $f = A \cdot (g \circ \varphi)$ admits a $C^{t(k)}$ solution g, then there exists a semialgebraic C^k function $\tilde{g} : \mathbb{R}^n \to \mathbb{R}^q$ s.t. $f - A \cdot (\tilde{g} \circ \varphi)$ is k-flat on $\varphi^{-1}(B)$.

By substracting $A \cdot (\tilde{g} \circ \varphi)$ on both side, we get an equation

$$f = A \cdot (g \circ \varphi)$$

where *f* is now *k*-flat on $\varphi^{-1}(B)$.

Motivations	
00000	

The proof OOOOOOOOOOO

Heart of the proof: induction on dimension

Strategy: construction of a semialgebraic Whitney field

$$G(b, \mathbf{y}) = \sum_{|\alpha| \le l} \frac{g_{\alpha}(b)}{\alpha!} \mathbf{y}^{\alpha} \in C^{0}(B)[\mathbf{y}]$$

vanishing on B' such that

 $\forall b \in B \setminus B', \, \forall a \in \varphi^{-1}(b), \, T_a^l f(\mathbf{x}) \equiv T_a^l A(\mathbf{x}) \, G(b, T_a^l \varphi(\mathbf{x})) \, \mod \, (\mathbf{x})^{l+1} \mathbb{R}[\![\mathbf{x}]\!]^p$

The proof

Heart of the proof: induction on dimension

Strategy: construction of a semialgebraic Whitney field

$$G(b, \mathbf{y}) = \sum_{|\alpha| \le l} \frac{g_{\alpha}(b)}{\alpha!} \mathbf{y}^{\alpha} \in C^{0}(B)[\mathbf{y}]$$

vanishing on B' such that

$$\forall b \in B \setminus B', \forall a \in \varphi^{-1}(b), T_a^l f(\mathbf{x}) \equiv T_a^l A(\mathbf{x}) G(b, T_a^l \varphi(\mathbf{x})) \mod (\mathbf{x})^{l+1} \mathbb{R}[\![\mathbf{x}]\!]^p$$

A - Whitney regularity

Given *B*, there exists $\rho \in \mathbb{N}$ such that for *b* in a neighborhood of *a*, there exists a path on *B* from *a* to *b* whose length is $\leq C ||b - a||^{1/\rho}$.

If G is a Whitney field of order $l \ge k\rho$ on $B \setminus B'$ then it is a Whitney field of order k on B.

The module of relations at $b \in \varphi(M)$

We consider the equation at the level of Taylor polynomials:

 $T_a^r f(\mathbf{x}) \equiv T_a^r A(\mathbf{x}) G(b, T_a^r \varphi(\mathbf{x})) \mod (\mathbf{x})^{r+1} \mathbb{R}[\![\mathbf{x}]\!]^p$

The module of relations of order r at $b \in \varphi(M)$ is

$$\mathcal{R}_r(b) \coloneqq \left\{ W \in \mathbb{R}[\![\mathbf{y}]\!]^q : \forall a \in \varphi^{-1}(b), \, T_a^r A(\mathbf{x}) W\left(\tilde{T}_a^r \varphi(\mathbf{x})\right) \equiv 0 \mod \mathfrak{m}_{\mathbf{x}}^{r+1} \mathbb{R}[\![\mathbf{x}]\!]^p \right\}$$

The module of relations at $b \in \varphi(M)$

We consider the equation at the level of Taylor polynomials:

 $T_a^r f(\mathbf{x}) \equiv T_a^r A(\mathbf{x}) G(b, T_a^r \varphi(\mathbf{x})) \mod (\mathbf{x})^{r+1} \mathbb{R}[\![\mathbf{x}]\!]^p$

The module of relations of order r at $b \in \varphi(M)$ is

$$\mathcal{R}_r(b) \coloneqq \left\{ W \in \mathbb{R}[\![\mathbf{y}]\!]^q : \forall a \in \varphi^{-1}(b), \, T_a^r A(\mathbf{x}) W\left(\tilde{T}_a^r \varphi(\mathbf{x})\right) \equiv 0 \mod \mathfrak{m}_{\mathbf{x}}^{r+1} \mathbb{R}[\![\mathbf{x}]\!]^p \right\}$$

B - Chevalley's function

Given $l \in \mathbb{N}$, there exists $r \ge l$ such that the derivatives of g of order $\le l$ can be expressed in terms of the derivatives of f of order $\le r$.

The proof

The module of relations at $b \in \varphi(M)$

Writing

$$W = \sum_{\substack{\boldsymbol{\beta} \in \mathbb{N}^n \\ j=1,\ldots,q}} W_{(\boldsymbol{\beta},j)} \mathbf{y}^{(\boldsymbol{\beta},j)} \quad \text{où} \quad \mathbf{y}^{(\alpha,j)} = \left(0,\ldots,0, y_1^{\alpha_1} \cdots y_n^{\alpha_n}, 0,\ldots,0\right)$$

We have that $W \in \mathcal{R}_r(b)$, i.e. $\forall a \in \varphi^{-1}(b), T_a^r A(\mathbf{x}) W\left(\tilde{T}_a^r \varphi(\mathbf{x})\right) \equiv 0 \mod \mathfrak{m}_{\mathbf{x}}^{r+1} \mathbb{R}[\![\mathbf{x}]\!]^p$, if and only if

$$\begin{split} \sum_{\substack{(\beta,j)\\|\beta|\leq r}} L_{(\alpha,i)}^{(\beta,j)}(a)W_{(\beta,j)} &= 0, \text{ où } \begin{cases} |\alpha| \leq r, \\ i = 1, \dots, p, \\ a \in \varphi^{-1}(b). \end{cases} \\ \text{Set } s \coloneqq \#\{(\beta,j) \ : \ |\beta| \leq r\} = \binom{n+r}{r}q, \qquad \underline{a} \in \{(a_1, \dots, a_s) \in M^s \ : \varphi(a_1) = \dots = \varphi(a_s)\}, \\ \rho_r^0(\underline{a}) \coloneqq \operatorname{rank} \begin{cases} \sum_{\substack{(\beta,j)\\|\beta|\leq r}} L_{(\alpha,i)}^{(\beta,j)}(a_v)W_{(\beta,j)} = 0 \ : \quad \substack{|\alpha| \leq r, \\ v = 1, \dots, p, \\ v = 1, \dots, s. \end{cases} \\ \text{ and } \rho_{r,l}^1(\underline{a}) \coloneqq \operatorname{rank} \begin{cases} \sum_{\substack{(\beta,j)\\|\beta|\leq r}} L_{(\alpha,i)}^{(\beta,j)}(a_v)W_{(\beta,j)} = 0 \ : \quad \substack{|\alpha| \leq r, \\ i = 1, \dots, p, \\ v = 1, \dots, s. \end{cases} \\ \text{ Set } \omega^{r,l} \coloneqq \binom{n+l}{l}q + \max_{\underline{a}} \rho^0(\underline{a}) - \max_{\underline{a}} \rho^1(\underline{a}). \text{ Then } l \leq r \leq r' \implies \omega^{r',l} \leq \omega^{r,l}. \\ \text{ Besides, for } b = \varphi(a_i) \text{ where the max is achieved, we have } \dim \pi_l(\mathcal{R}_r(b)) = \omega^{r,l}. \end{split}$$

The module of relations at $b \in \varphi(M)$

Lemma – Chevalley's function

Let $l \in \mathbb{N}$.

There exists $(\Lambda_{\tau})_{\tau}$ a stratification of *B* such that given a stratum Λ_{τ} , there exists $r \ge l$ satisfying

$$\forall b \in \Lambda_{\tau}, \ \pi_l(\mathcal{R}_r(b)) = \pi_l(\mathcal{R}_{r-1}(b))$$

where π_l if the truncation up to degree *l*.

A stratification of *B* is a finite partition \mathscr{S} of *B* into connected Nash submanifolds such that if $S \in \mathscr{S}$ then $(\overline{S} \setminus S) \cap B$ is the union of strata $T \in \mathscr{S}$ satisfying dim $T < \dim S$.

The module of relations at $b \in \varphi(M)$

Lemma – Chevalley's function

Let $l \in \mathbb{N}$.

There exists $(\Lambda_{\tau})_{\tau}$ a stratification of *B* such that given a stratum Λ_{τ} , there exists $r \ge l$ satisfying

$$\forall b \in \Lambda_{\tau}, \ \pi_l(\mathcal{R}_r(b)) = \pi_l(\mathcal{R}_{r-1}(b))$$

where π_l if the truncation up to degree *l*.

A stratification of *B* is a finite partition \mathscr{S} of *B* into connected Nash submanifolds such that if $S \in \mathscr{S}$ then $(\overline{S} \setminus S) \cap B$ is the union of strata $T \in \mathscr{S}$ satisfying dim $T < \dim S$.

From a pointwise situation to a uniform one

Can we obtain a result uniform with respect to b?

The module of relations at $b \in \varphi(M)$

Lemma – Chevalley's function

Let $l \in \mathbb{N}$.

There exists $(\Lambda_{\tau})_{\tau}$ a stratification of *B* such that given a stratum Λ_{τ} , there exists $r \ge l$ satisfying

$$\forall b \in \Lambda_{\tau}, \ \pi_l(\mathcal{R}_r(b)) = \pi_l(\mathcal{R}_{r-1}(b))$$

where π_l if the truncation up to degree *l*.

A stratification of *B* is a finite partition \mathscr{S} of *B* into connected Nash submanifolds such that if $S \in \mathscr{S}$ then $(\overline{S} \setminus S) \cap B$ is the union of strata $T \in \mathscr{S}$ satisfying dim $T < \dim S$.

From a pointwise situation to a uniform one

Can we obtain a result uniform with respect to b?

 \rightsquigarrow division with respect to the relations.

Motivations	
00000	

The proof ○○○○○●○○○○○○

Hironaka's formal division

- $F = \sum F_{(\alpha,j)} \mathbf{y}^{(\alpha,j)} \in \mathbb{R}[\![y_1, \dots, y_n]\!]^p$ where $\mathbf{y}^{(\alpha,j)} = (0, \dots, 0, y_1^{\alpha_1} \cdots y_n^{\alpha_n}, 0, \dots, 0).$
- The set $\mathbb{N}^n \times \{1, \dots, p\} \ni (\alpha, j)$ is totally ordered by $lex(|\alpha|, j, \alpha_1, \dots, \alpha_n)$.

Motivations	
00000	

The proof ○○○○○●○○○○○○

Hironaka's formal division

- $F = \sum F_{(\alpha,j)} \mathbf{y}^{(\alpha,j)} \in \mathbb{R}[\![y_1, \dots, y_n]\!]^p$ where $\mathbf{y}^{(\alpha,j)} = (0, \dots, 0, y_1^{\alpha_1} \cdots y_n^{\alpha_n}, 0, \dots, 0).$
- The set $\mathbb{N}^n \times \{1, \dots, p\} \ni (\alpha, j)$ is totally ordered by $lex(|\alpha|, j, \alpha_1, \dots, \alpha_n)$.
- supp $F \coloneqq \{(\alpha, j) : F_{(\alpha, j)} \neq 0\}$ exp $F \coloneqq \min(\operatorname{supp} F)$

Motivations

The proof ○○○○○●○○○○○○

Hironaka's formal division

•
$$F = \sum F_{(\alpha,j)} \mathbf{y}^{(\alpha,j)} \in \mathbb{R}[\![y_1, \dots, y_n]\!]^p$$
 where $\mathbf{y}^{(\alpha,j)} = (0, \dots, 0, y_1^{\alpha_1} \cdots y_n^{\alpha_n}, 0, \dots, 0).$

- The set $\mathbb{N}^n \times \{1, \dots, p\} \ni (\alpha, j)$ is totally ordered by $lex(|\alpha|, j, \alpha_1, \dots, \alpha_n)$.
- supp $F \coloneqq \{(\alpha, j) \ : \ F_{(\alpha, j)} \neq 0\}$ exp $F \coloneqq \min(\operatorname{supp} F)$

Theorem – Hironaka 1964, Bierstone–Milman 1987

Let
$$\Phi_1, \dots, \Phi_q \in \mathbb{R}[\![\mathbf{y}]\!]^p$$
. Set $(\alpha_i, j_i) \coloneqq \exp \Phi_i$.
Set $\Delta_1 \coloneqq (\alpha_1, j_1) + \mathbb{N}^n, \Delta_i \coloneqq ((\alpha_i, j_i) + \mathbb{N}^n) \setminus \bigcup_{k=1}^{i-1} \Delta_k$, and $\Delta \coloneqq (\mathbb{N}^n \times \{1, \dots, p\}) \setminus \bigcup_{k=1}^q \Delta_k$.
Then $\forall F \in \mathbb{R}[\![\mathbf{y}]\!]^p, \exists !Q_i \in \mathbb{R}[\![\mathbf{y}]\!], R \in \mathbb{R}[\![\mathbf{y}]\!]^p$ such that
• $F = \sum_{i=1}^q Q_i \Phi_i + R$
• $(\alpha_i, j_i) + \operatorname{supp} Q_i \subset \Delta_i$
• $\operatorname{supp} R \subset \Delta$
Besides $(\alpha_i, j_i) + \exp Q_i \ge \exp F$ and $\exp R \ge \exp F$.

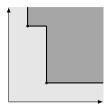
Motivations	
00000	

The proof

Diagram of initial exponents

Let $M \subset \mathbb{R}[\![\mathbf{y}]\!]^p$ be a $\mathbb{R}[\![\mathbf{y}]\!]$ -submodule. The *diagram of initial exponents* of *M* is

```
\mathcal{N}(M) \coloneqq \{ \exp F \ : \ F \in M \setminus \{0\} \} \subset \mathbb{N}^n \times \{1, \dots, p\}
```



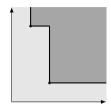
The proof

Diagram of initial exponents

Let $M \subset \mathbb{R}[\![\mathbf{y}]\!]^p$ be a $\mathbb{R}[\![\mathbf{y}]\!]$ -submodule. The *diagram of initial exponents* of M is

```
\mathcal{N}(M) \coloneqq \{ \exp F : F \in M \setminus \{0\} \} \subset \mathbb{N}^n \times \{1, \dots, p\}
```

Note that $\mathcal{N}(M)$ has finitely many vertices (α_i, j_i) , i = 1, ..., q. For each one, we pick a representative $\Phi_i \in M$, i.e. $\exp \Phi_i = (\alpha_i, j_i)$.



The proof ○○○○○●○○○○○

Diagram of initial exponents

Let $M \subset \mathbb{R}[\![\mathbf{y}]\!]^p$ be a $\mathbb{R}[\![\mathbf{y}]\!]$ -submodule. The *diagram of initial exponents* of M is

```
\mathcal{N}(M) \coloneqq \{ \exp F : F \in M \setminus \{0\} \} \subset \mathbb{N}^n \times \{1, \dots, p\}
```

Note that $\mathcal{N}(M)$ has finitely many vertices (α_i, j_i) , i = 1, ..., q. For each one, we pick a representative $\Phi_i \in M$, i.e. $\exp \Phi_i = (\alpha_i, j_i)$.

Corollary

Let $F \in \mathbb{R}[[\mathbf{y}]]^p$. Then $F \in M$ if and only if its remainder by the formal division w.r.t. the Φ_i is 0.

Particularly Φ_1, \ldots, Φ_q generate *M*.

The proof ○○○○○●○○○○○

Diagram of initial exponents

Let $M \subset \mathbb{R}[\![\mathbf{y}]\!]^p$ be a $\mathbb{R}[\![\mathbf{y}]\!]$ -submodule. The *diagram of initial exponents* of M is

```
\mathcal{N}(M) \coloneqq \{ \exp F : F \in M \setminus \{0\} \} \subset \mathbb{N}^n \times \{1, \dots, p\}
```

Note that $\mathcal{N}(M)$ has finitely many vertices (α_i, j_i) , i = 1, ..., q. For each one, we pick a representative $\Phi_i \in M$, i.e. $\exp \Phi_i = (\alpha_i, j_i)$.

Corollary

Let $F \in \mathbb{R}[[\mathbf{y}]]^p$. Then $F \in M$ if and only if its remainder by the formal division w.r.t. the Φ_i is 0.

Particularly Φ_1, \ldots, Φ_q generate *M*.

Proof. Write
$$F = \sum_{i=1}^{q} Q_i \Phi_i + R$$
 with supp $R \subset \Delta = \mathcal{N}(M)^c$.

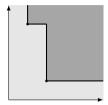


Diagram of initial exponents and module of relations

Lemma – Chevalley's function

Let $l \in \mathbb{N}$.

There exists $(\Lambda_{\tau})_{\tau}$ a stratification of *B* such that given a stratum Λ_{τ} , there exists $r \ge l$ satisfying

- $\forall b \in \Lambda_{\tau}, \ \pi_l(\mathcal{R}_r(b)) = \pi_l(\mathcal{R}_{r-1}(b)),$
- $\mathcal{N}(\mathcal{R}_r(b))$ is constant on Λ_{τ} .

We define B' as the union of the strata of $< \dim B$.

Motivation	
00000	

Construction of *G* on Λ_{τ}

For $b \in B \setminus B'$ and $t \ge r$, there exists a formal solution

$$T_a^t f(\mathbf{x}) \equiv T_a^t A(\mathbf{x}) W_b(T_a^t \varphi(\mathbf{x})) \mod (\mathbf{x})^{t+1} \mathbb{R}[\![\mathbf{x}]\!]^p, \quad \forall a \in \varphi^{-1}(b),$$

where $W_b \in \mathbb{R}[\mathbf{y}]^q$.

Let's fix a stratum Λ_{τ} and $b \in \Lambda_{\tau}$. Then, by formal division, there exists a unique polynomial of degree $\leq r$

$$V_{\tau}(b, \mathbf{y}) = \sum_{(\beta, j) \in \Delta_{\tau}} V_{\tau}^{\beta, j}(b) \mathbf{y}^{\beta, j} \in \mathbb{R}[\mathbf{y}]^{q}$$

such that

$$W_b(\mathbf{y}) - V_\tau(b, \mathbf{y}) \in \mathcal{R}_r(b) \quad \text{et} \quad \operatorname{supp} V_\tau(b, \mathbf{y}) \subset \Delta_\tau.$$

Motivation	
00000	

Construction of G on Λ_{τ}

For $b \in B \setminus B'$ and $t \ge r$, there exists a formal solution

$$T_a^t f(\mathbf{x}) \equiv T_a^t A(\mathbf{x}) \, W_b(T_a^t \varphi(\mathbf{x})) \mod (\mathbf{x})^{t+1} \mathbb{R}[\![\mathbf{x}]\!]^p, \quad \forall a \in \varphi^{-1}(b),$$

where $W_b \in \mathbb{R}[\mathbf{y}]^q$.

Let's fix a stratum Λ_{τ} and $b \in \Lambda_{\tau}$. Then, by formal division, there exists a unique polynomial of degree $\leq r$

$$V_{\tau}(b, \mathbf{y}) = \sum_{(\beta, j) \in \Delta_{\tau}} V_{\tau}^{\beta, j}(b) \mathbf{y}^{\beta, j} \in \mathbb{R}[\mathbf{y}]^{q}$$

such that

$$W_b(\mathbf{y}) - V_\tau(b,\mathbf{y}) \in \mathcal{R}_r(b) \quad \text{et} \quad \operatorname{supp} V_\tau(b,\mathbf{y}) \subset \Delta_\tau.$$

Lemma

$$G_{\tau}(b, \mathbf{y}) \coloneqq \pi_l\left(V_{\tau}(b, \mathbf{y})\right) = \sum_{\substack{(\beta, j) \in \Delta_{\tau} \\ |\beta| \leq l}} V_{\tau}^{\beta, j}(b) \, \mathbf{y}^{\beta, j}$$

is a semialgebraic Whitney field of order l on Λ_{τ} .

Motivations

The results

The proof

G is a Whitney field of order l on Λ_{τ}

Thanks to the following lemma, it is enough to check that $D_{b,v}G_{\tau}^{l-1}(b, \mathbf{y}) = D_{\mathbf{y},v}G_{\tau}(b, \mathbf{y})$.

Borel's lemma with parameter

Let
$$\Lambda$$
 be a C^m - submanifold and $F = \sum_{|\alpha| \le m} \frac{f_{\alpha}(a)}{\alpha!} \mathbf{x}^{\alpha} \in C^0(\Lambda)[\mathbf{x}]$

Then F is a Whitney field of order m on \wedge if and only if

$$\begin{cases} F^{m-1} \in C^1(\Lambda)[\mathbf{x}] \\ \forall a \in \Lambda, \, \forall u \in T_a \Lambda, \, D_{a,u} F^{m-1}(a, \mathbf{x}) = D_{\mathbf{x},u} F(a, \mathbf{x}) \end{cases}$$

Motivations

The results

The proof

G is a Whitney field of order l on Λ_{τ}

To simplify the situation, we omit φ . Applying $D_{b,v} - D_{\mathbf{y},v}$ to

$$T_a^r f(\mathbf{y}) \equiv T_a^r A(\mathbf{y}) V_\tau(b, \mathbf{y}) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$$

we get

$$0 \equiv T_a^r A(\mathbf{y}) \left(D_{b,v} V_{\tau}^{r-1} \left(b, \mathbf{y} \right) - D_{\mathbf{y},v} V_{\tau} \left(b, \mathbf{y} \right) \right) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$$

Motivations

The results

The proof

G is a Whitney field of order l on Λ_{τ}

To simplify the situation, we omit φ . Applying $D_{b,v} - D_{\mathbf{y},v}$ to $T_a^r f(\mathbf{y}) \equiv T_a^r A(\mathbf{y}) V_{\tau}(b, \mathbf{y}) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$

we get

$$0 \equiv T_a^r A(\mathbf{y}) \left(D_{b,v} V_{\tau}^{r-1}\left(b, \mathbf{y}\right) - D_{\mathbf{y},v} V_{\tau}\left(b, \mathbf{y}\right) \right) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$$

therefore

$$D_{b,v}V_{\tau}^{r-1}(b,\mathbf{y}) - D_{\mathbf{y},v}V_{\tau}(b,\mathbf{y}) \in \mathcal{R}_{r-1}(b)$$

The proof

G is a Whitney field of order l on Λ_{τ}

To simplify the situation, we omit φ . Applying $D_{b,v} - D_{\mathbf{y},v}$ to $T_a^r f(\mathbf{y}) \equiv T_a^r A(\mathbf{y}) V_{\tau}(b, \mathbf{y}) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$

we get

$$0 \equiv T_a^r A(\mathbf{y}) \left(D_{b,v} V_{\tau}^{r-1}\left(b, \mathbf{y}\right) - D_{\mathbf{y},v} V_{\tau}\left(b, \mathbf{y}\right) \right) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$$

therefore

$$D_{b,v}V_{\tau}^{r-1}(b,\mathbf{y}) - D_{\mathbf{y},v}V_{\tau}(b,\mathbf{y}) \in \mathcal{R}_{r-1}(b)$$

hence, by Chevalley's function,

$$D_{b,v}G_{\tau}^{l-1}(b,\mathbf{y}) - D_{\mathbf{y},v}G_{\tau}(b,\mathbf{y}) \in \pi_{l-1}(\mathcal{R}_{r-1}(b)) = \pi_{l-1}(\mathcal{R}_{r}(b))$$

The proof

G is a Whitney field of order *l* on Λ_{τ}

To simplify the situation, we omit φ . Applying $D_{b,v} - D_{\mathbf{y},v}$ to $T_a^r f(\mathbf{y}) \equiv T_a^r A(\mathbf{y}) V_x(b, \mathbf{y}) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$

we get

$$0 \equiv T_a^r A(\mathbf{y}) \left(D_{b,v} V_{\tau}^{r-1} \left(b, \mathbf{y} \right) - D_{\mathbf{y},v} V_{\tau} \left(b, \mathbf{y} \right) \right) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$$

therefore

$$D_{b,v}V_{\tau}^{r-1}(b,\mathbf{y}) - D_{\mathbf{y},v}V_{\tau}(b,\mathbf{y}) \in \mathcal{R}_{r-1}(b)$$

hence, by Chevalley's function,

$$D_{b,v}G_{\tau}^{l-1}(b,\mathbf{y}) - D_{\mathbf{y},v}G_{\tau}(b,\mathbf{y}) \in \pi_{l-1}(\mathcal{R}_{r-1}(b)) = \pi_{l-1}(\mathcal{R}_{r}(b))$$

but

$$\operatorname{supp}\left(D_{b,v}G_{\tau}^{l-1}(b,\mathbf{y})-D_{\mathbf{y},v}G_{\tau}(b,\mathbf{y})\right)\subset \Delta_{\tau}$$

consequently, $D_{b,v}G_{\tau}^{l-1}(b, \mathbf{y}) = D_{\mathbf{y},v}G_{\tau}(b, \mathbf{y}).$

Gluing between strata

C - gluing between strata: the Łojasiewicz inequality

Fix a stratum Λ_{τ} . There exists $\sigma \in \mathbb{N}$ such that if $t \ge r + \sigma$ then $\lim_{b \to \overline{\Lambda_{\tau}} \setminus \Lambda_{\tau}} V_{\tau}^{\beta,j}(b) = 0$.

The constant term of the equation is vanishing on B' hence on $\overline{\Lambda_{\tau}} \setminus \Lambda_{\tau}$.

Motivations	The results	The proof
		000000000000000000000000000000000000000

Summary

We constructed $G(b, \mathbf{y}) = \sum_{|\alpha| \le k} \frac{g_{\alpha}(b)}{\alpha!} \mathbf{y}^{\alpha}$ a semialgebraic Whitney field of order *k* on *B* such that

 $\forall b \in B, \, \forall a \in \varphi^{-1}(b), \, T_a^k f(\mathbf{x}) \equiv T_a^k A(\mathbf{x}) \, G(b, T_a^k \varphi(\mathbf{x})) \, \mod \, (\mathbf{x})^{k+1} \mathbb{R}[\![\mathbf{x}]\!]^p$

Using Kurdyka–Pawłucki–Thamrongthanyalak theorem, we obtain a C^k semialgebraic solution $g : \mathbb{R}^n \to \mathbb{R}^q$ such that $f - A \cdot (g \circ \varphi)$ is *k*-flat on $\varphi^{-1}(B)$.

Motivations	The results	The proof
		0000000000000

Summary

We constructed $G(b, \mathbf{y}) = \sum_{|\alpha| \le k} \frac{g_{\alpha}(b)}{\alpha!} \mathbf{y}^{\alpha}$ a semialgebraic Whitney field of order *k* on *B* such that

 $\forall b \in B, \, \forall a \in \varphi^{-1}(b), \, T_a^k f(\mathbf{x}) \equiv T_a^k A(\mathbf{x}) \, G(b, T_a^k \varphi(\mathbf{x})) \, \, \operatorname{mod} \, \, (\mathbf{x})^{k+1} \mathbb{R}[\![\mathbf{x}]\!]^p$

Using Kurdyka–Pawłucki–Thamrongthanyalak theorem, we obtain a C^k semialgebraic solution $g : \mathbb{R}^n \to \mathbb{R}^q$ such that $f - A \cdot (g \circ \varphi)$ is *k*-flat on $\varphi^{-1}(B)$.

Loss of differentiability

For $k \in \mathbb{N}$, we set $l \ge k\rho$, then $r \ge r(l)$ and finally $t(k) := t \ge r + \sigma$ where

- A. ρ is an upper bound of Whitney's loss of differentiability (induction step).
- **B**. $r : \mathbb{N} \to \mathbb{N}$ is an upper bound of the Chevalley functions on the various strata.
- C. σ is an upper bound of Łojasiewicz's loss of differentiability on each stratum.