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Motivations — Whitney’s Extension Problem

Whitney’s Extension Problem

Let X cR"beclosedand f : X - R.
Under which assumptions does f admit a C"™ extension?
(i.e. 3F : R" - R which is " and such that F|y = f)
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Motivations — Whitney’s Extension Problem

Whitney’s Extension Problem

Let X cR"beclosedand f : X - R.
Under which assumptions does f admit a C"™ extension?
(i.e. 3F : R" - R which is " and such that F|y = f)

C. Fefferman, 2006

Characterization of functions f : X — R admitting a C™ extension.
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Motivations
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Motivations — Whitney’s Extension Problem

Whitney’s Extension Problem

Let X cR"beclosedand f : X - R.
Under which assumptions does f admit a C"™ extension?
(i.e. 3F : R" - R which is " and such that F|y = f)

C. Fefferman, 2006

Characterization of functions f : X — R admitting a C™ extension.

Geometric version of Whitney’s Extension Problem

If the data are semialgebraic, does f admit an extension preserving this condition?
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Motivations — Whitney’s Extension Problem

Theorem — Whitney, 1934

Let X c R" be closed. Consider a family (f, : X — R)qene Of continuous functions such that
|a|<m

Vze X,VaeN", |a| <m = f,(x)— Z fa+p:(y)(x—y)ﬁ= 0 (||x—y||m_|"’|) (1)
|Bl<m—|a| ﬁ Xox,y—z

then there exists a C"™ function F : R” — R such that D*F = f, on X (and F is C® on R" \ X).

’

Such a family (f, @ X = R)genn jo1<m Of cOntinuous functions satisfying (1) is called a Whitney
field of order m on X.
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Motivations — Whitney’s Extension Problem

Theorem — Whitney, 1934

Let X c R" be closed. Consider a family (f, : X — R)qene Of continuous functions such that
|a|<m

Vze X,VaeN", |a| <m = f,(x)— Z fa+p:(y)(x—y)ﬁ= 0 (||x—y||m_|"’|) (1)
|Bl<m—|a| ﬁ Xox,y—z

then there exists a C"™ function F : R” — R such that D*F = f, on X (and F is C® on R" \ X).

’

Such a family (f, @ X = R)genn jo1<m Of cOntinuous functions satisfying (1) is called a Whitney
field of order m on X.

Theorem — Kurdyka—Pawtucki, 1997, 2014 — Thamrongthanyalak, 2017

If the set X and the functions f, are definable in an o-minimal structure then we may assume
that F is definable too (and C? on R" \ X for g > m).
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Motivations — The Brenner—Fefferman—Hochster—Kollar problem

O Letfy.....f, €R[xps....x,].
Which functions ¢ : R" — R may be expressed as ¢ = Y ¢, f; with ¢, € C°(R",R)?
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Motivations — The Brenner—Fefferman—Hochster—Kollar problem

O Letfy,.... [, €R[x,...,x,].
Which functions ¢ : R" — R may be expressed as ¢ = Y ¢, f; with ¢, € C°(R",R)?

O Let f1,..., f, € R[x},...,x,]. Let ¢ : R" > R satisfying some property.

If o = Z @, f; where ¢, € C(R",R), does there exist @; with the above property s.t. ¢ = Z @ f:?
i=1 i=1
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Motivations — The Brenner—Fefferman—Hochster—Kollar problem

O Let f,.... f, ER[x},...,x,].
Which functions ¢ : R" — R may be expressed as ¢ = Y ¢, f; with ¢, € C°(R",R)?

O Let f1,..., f, € R[x},...,x,]. Let ¢ : R" > R satisfying some property.

If o = Z @, f; where ¢, € e C°(R",R), does there exist @; with the above property s.t. ¢ = Z @ f:?
i=1 i=1

¢ Fefferman—Kollar (2013) — polynomial data:
Continuous solution = semialgebraic continuous solution.
e Kucharz—Kurdyka (2017) — regulous data on a surface:
Continuous solution = regulous solution.
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Motivations — The Brenner—Fefferman—Hochster—Kollar problem

O Let f,.... f, ER[x},...,x,].
Which functions ¢ : R" — R may be expressed as ¢ = Y ¢, f; with ¢, € C°(R",R)?

0O Let f1,.... [, €R[xy,...,x,]. Let ¢ : R" > R satisfying some property.

If o = Z @, f; where ¢, € e C°(R",R), does there exist @; with the above property s.t. ¢ = Z @ f:?
i=1 i=1

Fefferman—Kollar (2013) — polynomial data:

Continuous solution = semialgebraic continuous solution.
Kucharz—Kurdyka (2017) — regulous data on a surface:
Continuous solution = regulous solution.

Kollar—Nowak (2015) — polynomial data:

Continuous solution = regulous solution.
Adamus—Seyedinejad (2018) — polynomial data:
Continuous solution # arc-analytic semialgebraic solution.
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Motivations — The Brenner—Fefferman—Hochster—Kollar problem

The Brenner—Fefferman—Hochster—Kollar problem
Under which assumptions, does an equation ¢ = ) ¢, f; admit a C" solution?
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Motivations — The Brenner—Fefferman—Hochster—Kollar problem

The Brenner—Fefferman—Hochster—Kollar problem
Under which assumptions, does an equation ¢ = ) ¢, f; admit a C" solution?

Fefferman—Luli, 2014

Characterization of such equations admitting a C™ solution.
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Motivations — The Brenner—Fefferman—Hochster—Kollar problem

The Brenner—Fefferman—Hochster—Kollar problem
Under which assumptions, does an equation ¢ = ) ¢, f; admit a C" solution?

Fefferman—Luli, 2014

Characterization of such equations admitting a C™ solution.

Geometric version of the Brenner—Fefferman—Hochster—Kollar problem
If the data are semialgebraic, does the equation admit a C™ solution preserving this condition?
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Questions: are there solutions preserving semialgebraicity?

Let X c R" be semialgebraic and closed. Let f : X — R be semialgebraic.
If f admits a C™ extension, does it admit a semialgebraic C™ extension?

Question

LetA: R" > M, (R)and f : R" — R” be semialgebraic.
If there exists a C” function g : R” — RY such that f(x) = A(x)g(x),
then does there exist a semialgebraic €™ function g : R" — R? such that f(x) = A(x)g(x)?

| A\
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Motivations
L]

Questions: are there solutions preserving semialgebraicity?

Let X c R" be semialgebraic and closed. Let f : X — R be semialgebraic.
If f admits a C™ extension, does it admit a semialgebraic C™ extension?

Question

LetA: R" > M, (R)and f : R" — R” be semialgebraic.
If there exists a C” function g : R” — RY such that f(x) = A(x)g(x),
then does there exist a semialgebraic €™ function g : R" — R? such that f(x) = A(x)g(x)?

| A\

¢ Aschenbrenner—Thamrongthanyalak (2019): Vn but resp. m =1 and m = 0.
e Fefferman—Luli (in preparation): Vm but n = 2.

Jean-Baptiste Campesato ™ solutions of semialgebraic equations



Motivations
L]

Questions: are there solutions preserving semialgebraicity?

Let X c R" be semialgebraic and closed. Let f : X — R be semialgebraic.
If f admits a C™ extension, does it admit a semialgebraic C™ extension?

Question

LetA: R" > M, (R)and f : R" — R” be semialgebraic.
If there exists a C” function g : R” — RY such that f(x) = A(x)g(x),
then does there exist a semialgebraic €™ function g : R" — R? such that f(x) = A(x)g(x)?

| A\

¢ Aschenbrenner—Thamrongthanyalak (2019): Vn but resp. m =1 and m = 0.
e Fefferman—Luli (in preparation): Vm but n = 2.
¢ Bierstone—C.—Milman (2020): Vn, Vm, but with a loss of differentiability.
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Presentation of the results

Theorem — Bierstone—C.—Milman, 2020

Given A : R" — M, ,(R) semialgebraic, there exists r : N — N such that:

If F : R" - R? semialgebraic may be written F(x) = A(x)G(x) where G is C"™,
then F(x) = A(x)G(x) where G(x) is semialgebraic and C™.
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The results
o

Presentation of the results

Theorem — Bierstone—C.—Milman, 2020

Given A : R" — M, ,(R) semialgebraic, there exists r : N — N such that:
If F : R" - R? semialgebraic may be written F(x) = A(x)G(x) where G is C"™,
then F(x) = A(x)G(x) where G(x) is semialgebraic and C™.

Besides, if A is C* then r(m) = am + B.

Jean-Baptiste Campesato ™ solutions of semialgebraic equations



The results
o

Presentation of the results

Theorem — Bierstone—C.—Milman, 2020

Given A : R" — M, ,(R) semialgebraic, there exists r : N — N such that:
If F : R" - R? semialgebraic may be written F(x) = A(x)G(x) where G is C"™,
then F(x) = A(x)G(x) where G(x) is semialgebraic and C™.

Besides, if A is C* then r(m) = am + B.

Theorem — Bierstone—C.—Milman, 2020

Given X c R" closed and semialgebraic, there exists r : N — N satisfying the following property:
if /1 X - R is semialgebraic and admits a "™ extension, then it admits a C" extension which
is semialgebraic.
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Presentation of the results - A common generalization

The equation problem

Consider an equation
Vx € R", A(x)G(x) = F(x)

By resolution of singularities, there exists

¢ : M — R" Nash and proper defined on a Nash
manifold such that after composition, we get an
equation

Vy € M, A(»)G(p(»)) = F(y)

where A is now Nash.
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The results

Presentation of the results - A common generalization

The equation problem The extension problem

Consider an equation Let X c R" be semialgebraic and closed.

Vx € R", A(x)G(x) = F(x) By resolution of singularities, there exists ¢ : M — R”

. . . . Nash and proper defined on a Nash manifold such
By resolution of singularities, there exists that X = o(M)
¢ : M — R" Nash and proper defined on a Nash A
manlftgld such that after composition, we get an Giveng : R" - Rand f : X — R, we have
equation gx = / if and only if
Vy e M, A(»)G =F -

y WMG(e(y) = F(y) Yy e M, o) = F)

where A is now Nash. whers f = f e o.
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Presentation of the results - The main result

Theorem — Bierstone—C.—Milman, 2020

LetA: R" - M, ,(R) be Nash and let ¢ : M — R" be Nash and proper defined on M C RN a
Nash submanifold.

There exists r : N — N satisfying the following property.

If £ : M — R? semialgebraic may be written

F(x) = A(x)g(e(x))
for a C"™ function g : R" — RY then
S(x) = A(x)g(e(x))

for a semialgebraic C™ function g.
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The proof
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Heart of the proof: induction on dimension

Proposition: the induction step

Let B C (M) be semialgebraic and closed.
There exist B’ C B semialgebraic satisfying dim B’ < dim B and 7 : N — N such that if

O f: M- RPis C'®, semialgebraic and 1(k)-flat on ¢~!(B’), and
® f = A-(ge° ) admits a C'® solution g,
then there exists a semialgebraic C* function g : R” - RYs.t. f — A- (g ¢) is k-flat on ¢! (B).
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The proof
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Heart of the proof: induction on dimension

Proposition: the induction step

Let B C (M) be semialgebraic and closed.
There exist B’ C B semialgebraic satisfying dim B’ < dim B and 7 : N — N such that if

O f: M- RPis C'®, semialgebraic and 1(k)-flat on ¢~!(B’), and
® f = A-(ge° ) admits a C'® solution g,
then there exists a semialgebraic C* function g : R” - RYs.t. f — A- (g ¢) is k-flat on ¢! (B).

By substracting A - (g - ) on both side, we get an equation
f=A-(g°9)

where £ is now k-flat on ¢~!(B).
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The proof
(o] J

Heart of the proof: induction on dimension

Strategy: construction of a semialgebraic Whitney field

Go.y) = g‘;( ly* € Bly)

|a|<I
vanishing on B’ such that

Vbe B\ B',Vae ¢ ' (b), T f(x) = T AX) G(b, T p(x)) mod (x)'"'R[x]”
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The proof
(o] J

Heart of the proof: induction on dimension

Strategy: construction of a semialgebraic Whitney field

Go.y = Y, 0% e iy

|a|<I
vanishing on B’ such that

Vbe B\ B',Vae ¢ ' (b), T f(x) = T AX) G(b, T p(x)) mod (x)'"'R[x]”

A - Whitney regularity

Given B, there exists p € N such that for » in a neighborhood of a, there exists a path on B from a
to b whose length is < C||b — a||~.

If G is a Whitney field of order / > kp on B\ B’ then it is a Whitney field of order k on B.
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The proof
@00

The module of relations at b € (M)

We consider the equation at the level of Taylor polynomials:
T! f(X) = T/ A(X) G(b, T, (X)) mod (x)""'R[x]?
The module of relations of order r at b € (M) is

R,(b) = {W eR[y]? : Vae o™\ (b), T AW (T7e(x)) =0 mod m;“R[[x]]P}
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The proof
@00

The module of relations at b € (M)

We consider the equation at the level of Taylor polynomials:
T! f(X) = T/ A(X) G(b, T, (X)) mod (x)""'R[x]?
The module of relations of order r at b € (M) is

R,(b) = {W eR[y]? : Vae o™\ (b), T AW (T7e(x)) =0 mod m;“R[[x]]P}

B - Chevalley’s function

Given I € N, there exists r > I such that the derivatives of g of order </ can be expressed in
terms of the derivatives of f of order < r.
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The proof
oeo

The module of relations at b € (M)
Writing

W= 3 Wg,y® ot y*=(0,..,0,"y"0,..,0)
BeN"
Jj=l....q

We have that W € R,(b), i.e. Va € ¢~ (b), T, AW (T,¢(x)) =0 mod myg'R[x]’, if and only if

o] <7,
B.J) _ N P —
Y LG @Wg, =0, ou i=1,....p,

n) ae @ l(b).
1BI<r
Set s=#{(B.): IBI<ri=(")a,  a€{(@...a) €M’ : gla) == g},
B.) lal <r. B.) lal <r.
P (a) =ranky ¥ LiN@)Wpg,=0 @ i=1,...p, ¢ and p! (a)=rankq Y Lo @)Wg,=0: i=1,...p,
B.J) v=1,...,s. B.J) v=1,...,s.
IBI<r 151p1<r

Set v := <n -;- l)q + maxp’(a) - maxp'(a). Thenl <r <r = W' < W,
a a

Besides, for b = ¢(a,) where the max is achieved, we have dim (R, (b)) = w"'.
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The module of relations at b € (M)

Lemma — Chevalley’s function

Let/ eN.
There exists (A,), a stratification of B such that given a stratum A_, there exists r > I satisfying

Vb € A,, m(R,(b) = m(R,_ (b))

where m; if the truncation up to degree /.

A stratification of B is a finite partition & of B into connected Nash submanifolds such that if S € & then
<§\S> N B is the union of strata T € & satisfying dim 7" < dim S.
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The proof
ooce

The module of relations at b € (M)

Lemma — Chevalley’s function

Let/ eN.
There exists (A,), a stratification of B such that given a stratum A_, there exists r > I satisfying

Vb € A,, m(R,(b) = m(R,_ (b))

where m; if the truncation up to degree /.

A stratification of B is a finite partition & of B into connected Nash submanifolds such that if S € & then
<§\S> N B is the union of strata T € & satisfying dim 7T < dim S.

From a pointwise situation to a uniform one

Can we obtain a result uniform with respect to 5?

Jean-Baptiste Campesato ™ solutions of semialgebraic equations
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The module of relations at b € (M)

Lemma — Chevalley’s function

Let/ eN.
There exists (A,), a stratification of B such that given a stratum A_, there exists r > I satisfying

Vb € A,, m(R,(b) = m(R,_ (b))

where m; if the truncation up to degree /.

A stratification of B is a finite partition & of B into connected Nash submanifolds such that if S € & then
<§\S> N B is the union of strata T € & satisfying dim 7T < dim S.

From a pointwise situation to a uniform one
Can we obtain a result uniform with respect to 5?

~ division with respect to the relations.
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Hironaka’s formal division

e F= ZF(D,J)y("”j) € R[y,,...,y,]’ where y* = (O, ,O,y‘;(1 eyt 0, ... ,0).
* ThesetN"x {1,...,p} 3 (a, ) is totally ordered by lex(|a|, j, a, ..., a,).
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The proof
(]

Hironaka’s formal division

e F= ZF(D,J)y("”j) € R[y,,...,y,]’ where y* = (O, ,O,y‘;(1 eyt 0, ... ,0).
* ThesetN"x {1,...,p} 3 (a, ) is totally ordered by lex(|a|, j, a, ..., a,).
® supp F = {(a,j) : F,,; #0} e exp F := min(supp F)
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The proof
(]

Hironaka’s formal division

°* F=YF,, v €R[y,.....y,]” where y* = (0,...,0,y;" - y,".0,...,0).
* ThesetN"x {1,...,p} 3 (a, ) is totally ordered by lex(|a|, j, a, ..., a,).
® supp F = {(a,j) : F,,; #0} e exp F := min(supp F)

Theorem — Hironaka 1964, Bierstone—Milman 1987
Let®,,...,®, € R[y]". Set(a,,j,) = exp®,.

i—1

q
Set A, = (ay,j) + N, A = (e, j) +N") \ [ J A, and A== (N x {1,....ph \ | J A,
k=1 k=1

Then VF € R[y]*, 3'0; € R]y], R € R[y]? such that
q
* F=Y 0® +R
i=1

® (a;,j) +suppQ,; C A,
® suppRCA

Besides (a;,j;) + exp O, > exp F and exp R > exp F.
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The proof
o

Diagram of initial exponents

Let M c R[y]” be a R[y]-submodule.
The diagram of initial exponents of M is

N(M):={expF : FeE M\ {0}} cN"x{l,...,p}
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The proof
o

Diagram of initial exponents

Let M c R[y]” be a R[y]-submodule.
The diagram of initial exponents of M is

N(M):={expF : Fe M\ {0}} cN"x (1,...,p}

Note that M'(M) has finitely many vertices (a;, j;), i = 1, ..., q.
For each one, we pick a representative ®;, € M, i.e. exp®; = (a;, j;).
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The proof
o

Diagram of initial exponents

Let M c R[y]? be a R[y]-submodule.
The diagram of initial exponents of M is

N(M):={expF : Fe M\ {0}} cN"x{1,...,p}

Note that M'(M) has finitely many vertices (a;, j;), i = 1, ..., q.
For each one, we pick a representative &, € M, i.e. exp®; = (a;, j;).

Let F € R[y]”. Then F € M if and only if its remainder by the formal division w.r.t. the &; is 0.

Particularly ®,, ..., ®, generate M.
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The proof
o

Diagram of initial exponents

Let M c R[y]? be a R[y]-submodule.
The diagram of initial exponents of M is

N(M):={expF : Fe M\ {0}} cN"x{1,...,p}

Note that M'(M) has finitely many vertices (a;, j;), i = 1, ..., q.
For each one, we pick a representative &, € M, i.e. exp®; = (a;, j;).

Let F € R[y]”. Then F € M if and only if its remainder by the formal division w.r.t. the &; is 0.

Particularly ®,, ..., ®, generate M.

Proof. Write F =

q
Q;®; + R with suppR C A = N (M)°. "

i=1
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Diagram of initial exponents and module of relations

Lemma — Chevalley’s function

Let/ e N.
There exists (A,), a stratification of B such that given a stratum A, there exists r > [ satisfying

° Vb e A, m(R(b)=mR,_ b)),
* N'(R,(b)) is constant on A,.

We define B’ as the union of the strata of < dim B.
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Construction of G on A,

For b € B\ B’ and r > r, there exists a formal solution
T! f(X) = T.AX) W,(T.px)) mod (x)*'R[X]", Vae€ ¢ '(b),
where W, € R[y]‘.

Let’s fix a stratum A, and b € A,. Then, by formal division, there exists a unique polynomial of degree < r

v.by)= Y, Vby eRiyl

(B.J)EA

such that
Wy (y) =V, (b,y) € R.(b) et suppV,(by)CA..
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The proof

Construction of G on A,

For b € B\ B’ and r > r, there exists a formal solution
T! f(X) = T.AX) W,(T.px)) mod (x)*'R[X]", Vae€ ¢ '(b),
where W, € R[y]‘.

Let’s fix a stratum A, and b € A,. Then, by formal division, there exists a unique polynomial of degree < r

v.by)= Y, Vby eRiyl

(B.J)EA

such that

Wy (y) =V, (b,y) € R.(b) et suppV,(by)CA..

G.(by) =m (V,by) = Y VEby"
(B)EA,
1Bt

is a semialgebraic Whitney field of order / on A, .

@00
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G is a Whitney field of order / on A,

Thanks to the following lemma, it is enough to check that D, ,G;~'(b,y) = Dy, ,G(b,y).

Borel’s lemma with parameter

Let A be a C™- submanifold and F = Z f‘;( %) g * e CO(N)[x].
|a|<m :

Then F is a Whitney field of order m on A if and only if

F™ e cl(N)[x]
Va €A, VYueT,A, D, ,F" ' (a,x) = Dy ,F(a,X)
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G is a Whitney field of order / on A,

To simplify the situation, we omit ¢. Applying D, , — Dy , to

y,v
Tif(y) =T, A(Y) V, (by) mod (y) ' R[y]”

we get
0=T;A(y) (D,, V™" (b.y) = Dy, V, (by)) mod (y)"'R[y]”
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The proof
oeo

G is a Whitney field of order / on A,

To simplify the situation, we omit ¢. Applying D, , — Dy , to

y,v
T, f(y) = T;A(Y) Ve (by) mod (y)*'R[y]”
we get
0=T;Ay) (Dy, V7" (b,y) - Dy, V, (by) mod (y)*'R[y]”

therefore
D, V' (b.y) - Dy ,V, (b.y) € R,_(b)
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The proof
oeo

G is a Whitney field of order / on A,

To simplify the situation, we omit ¢. Applying D, , — Dy , to

y,v
Tif(y) =T, A(Y) V, (by) mod (y) ' R[y]”

we get
0=T;A(y) (D,, V™" (b.y) = Dy, V, (by)) mod (y)"'R[y]”

therefore
D, V{7 (b,y) — Dy V. (b,y) € R,_(b)

hence, by Chevalley’s function,

D,,Gr ' (b,Y) = Dy ,G(b,¥) € 1_1(R,_ (b)) = 7 (R, (b))
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The proof
oeo

G is a Whitney field of order / on A,

To simplify the situation, we omit ¢. Applying D, , — Dy , to

y,v
Tif(y) =T, A(Y) V, (by) mod (y) ' R[y]”

we get
0=T;A®y) (Dy,V: ™" (b.y) - Dy ,V, (by)) mod (y)"'R[y]”’

therefore
Dy VI (b.y) - Dy, V, (b.y) € R,_(b)

hence, by Chevalley’s function,
DG\ (b.Y) = Dy ,Go(b,Y) € 11 (R, (b)) = 7, (R, (b))

but
supp (Db,uG'Ir_l(bs y) - Dy,vG'r(b’ y)) - AT

consequently, D, .G\~ (b,y) = Dy ,G(b.y). /
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The proof
ooe

Gluing between strata

C - gluing between strata: the tojasiewicz inequality

Fix a stratum A,. There exists o € N such thatift > r+ o then lim Vf’j(b) =0.
b_)AT\AT

The constant term of the equation is vanishing on B' hence on A, \ A,.
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The proof

Summary

8o(b)

We constructed G(b,y) = 2 ==

la|<k

y¢ a semialgebraic Whitney field of order k on B such that

Vb € B, Va € ¢~ (b), TX f(x) = TFAX) G(b, T* p(x)) mod (x)*"'R[x]”

Using Kurdyka—Pawtucki-Thamrongthanyalak theorem, we obtain a ¥ semialgebraic solution
g : R" - R7suchthat f — A- (g ) is k-flat on ¢~ !(B). [ |
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The proof

Summary

8o(b)

Ty“ a semialgebraic Whitney field of order k on B such that

We constructed G(b, y) = 2

la|<k
Vb € B, Va € ¢~ (b), TX f(x) = TFAX) G(b, T* p(x)) mod (x)*"'R[x]”

Using Kurdyka—Pawtucki-Thamrongthanyalak theorem, we obtain a ¥ semialgebraic solution
g : R" - R7suchthat f — A- (g ) is k-flat on ¢~ !(B). [ |

Loss of differentiability

For k € N, we set [ > kp, then r > r(I) and finally ¢(k) := ¢ > r + o where
A. pis an upper bound of Whitney’s loss of differentiability (induction step).
B. r : N - Nis an upper bound of the Chevalley functions on the various strata.
C. o is an upper bound of tojasiewicz’s loss of differentiability on each stratum.
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