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Introduction: goal

• 𝑋 = {𝑥 ∈ ℝ𝑁 | 𝑃1(𝑥) = ⋯ = 𝑃𝑟(𝑥) = 0} a real algebraic set.

• ℒ(𝑋) ≔ {𝛾 ∶ (ℝ, 0) 𝐶𝜔
−−→ ℝ𝑁

| Im(𝛾) ⊂ 𝑋} the space of arcs on 𝑋

Goal
Construct a measure ℒ(𝑋) ⊃ 𝐴⇝ 𝜇(𝐴) ∈ 𝑅 ≠ ℝ having some good properties, for instance:

• Measurable sets form a boolean algebra
• 𝜇(𝐴 ⊔ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵)
• ℒ(𝑋) is measurable
• A change of variables formula
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Introduction: history
• Premotivic world:

• The Nash problem (1968, published in 1995): study the singularities of a complex algebraic
varieties through its space of holomorphic arcs.

• In the 80s and early 90s: Hironaka, Lejeune-Jalabert, Kurdyka, Hickel, …
• 2012: Fernández de Bobadilla and Pe Pereira.
• 2016: de Fernex and Docampo.

• Motivic avent:
• Kontsevich 95: a first motivic measure in the non-singular case to prove Batyrev’s conjecture.
• Foundations of the motivic measure developed: Denef and Loeser, Batyrev, Looijenga, …
• Applications to birational geometry: Ein, Mustaţă, …

• The real counterpart:
• Koike and Parusiński 2004, Fichou 2005: motivic measure in the non-singular case to study

singularities of real analytic functions.
• C. 2016: in the singular case to study blow-Nash maps.
• C.–Fukui–Kurdyka–Parusiński 2019: in the singular case to study inner-Lipschitz maps.

Problems /ℝ: no Nullstellensatz and no Chevalley’s theorem!
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Arcs & Jets: the arc space
Fix 𝑋 = {𝑥 ∈ ℝ𝑁 | 𝑃1(𝑥) = ⋯ = 𝑃𝑟(𝑥) = 0} a real algebraic set.

Definition – Arc space

ℒ(𝑋) ≔ {𝛾 ∶ (ℝ, 0) 𝐶𝜔
−−→ ℝ𝑁

| Im(𝛾) ⊂ 𝑋}

It behaves like an infinite dimensional algebraic set:

Example
Set 𝑋 = {𝑦2 − 𝑥3 = 0} ⊂ ℝ2.

ℒ(𝑋) = {𝛾(𝑡) = (𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + ⋯ , 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + ⋯) ∈ ℝ{𝑡}2 | 𝛾2(𝑡)2 − 𝛾1(𝑡)3 = 0}
= {𝛾(𝑡) ∈ ℝ{𝑡}2 | (𝑏2

0 − 𝑎3
0) + (2𝑏0𝑏1 − 3𝑎1𝑎2

0) 𝑡 + (𝑏2
1 + 2𝑏0𝑏2 − 3𝑎0𝑎2

1 − 3𝑎2
0𝑎2) 𝑡2 + ⋯ = 0}

= {(𝑎0, 𝑎1, … , 𝑏0, 𝑏1, …) | 𝑏2
0 = 𝑎3

0, 3𝑎1𝑎2
0 = 2𝑏0𝑏1, 𝑏2

1 + 2𝑏0𝑏2 = 3𝑎0𝑎2
1 + 3𝑎2

0𝑎2, …}
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Arcs & Jets: the jet spaces
Fix 𝑋 = {𝑥 ∈ ℝ𝑁 | 𝑃1(𝑥) = ⋯ = 𝑃𝑟(𝑥) = 0} a real algebraic set.

Definition – Jet space
ℒ𝑛(𝑋) ≔ {𝛾 ∈ ℒ (ℝ𝑁 ) /mod 𝑡𝑛+1 | ∀𝑓 ∈ 𝐼(𝑋), 𝑓 (𝛾(𝑡)) ≡ 0 mod 𝑡𝑛+1}

It is an algebraic subset of ℝ𝑁(𝑛+1):

Example
Set 𝑋 = {𝑦2 − 𝑥3 = 0} ⊂ ℝ2 then 𝐼(𝑋) = ⟨𝑦2 − 𝑥3⟩.

ℒ1(𝑋) = {𝛾 ∈ ℝ{𝑡}2/mod 𝑡2 | 𝛾2(𝑡)2 ≡ 𝛾1(𝑡)3 mod 𝑡2}
= {(𝑎0 + 𝑎1𝑡, 𝑏0 + 𝑏1𝑡) | (𝑏0 + 𝑏1𝑡)2 ≡ (𝑎0 + 𝑎1𝑡)3 mod 𝑡2}
= {(𝑎0, 𝑎1, 𝑏0, 𝑏1) | 𝑏2

0 = 𝑎3
0, 3𝑎1𝑎2

0 = 2𝑏0𝑏1}
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Arcs & Jets: truncations

Definition – Truncation morphisms
They are the natural projection maps • 𝜋𝑛 ∶ ℒ(𝑋) → ℒ𝑛(𝑋) • 𝜋𝑚

𝑛 ∶ ℒ𝑚(𝑋) → ℒ𝑛(𝑋) for 𝑚 ≥ 𝑛

Proposition
TFAE 1 𝑋 is non-singular 2 ∀𝑛, 𝜋𝑛 is surjective 3 ∀𝑛, 𝜋𝑛+1

𝑛 is surjective

Example: 3 ⟹ 1

Set 𝑋 = {𝑦2 − 𝑥3 = 0} ⊂ ℝ2 then 𝛼 = (0, 1) ∈ 𝑇0𝑋 ⧵ 𝐶0𝑋.
Assume that 𝛼𝑡 + 𝑡2𝜂(𝑡) ∈ ℒ2(𝑋). Then (𝑡 + 𝑡2𝜂2(𝑡))2 − (𝑡𝜂1(𝑡))3 = 𝑡2 + ⋯.
Hence 𝛼𝑡 ∈ ℒ1(𝑋) ⧵ 𝜋2

1 (ℒ2(𝑋)).

Beware
When 𝑋 is singular: 𝜋𝑛(ℒ(𝑋)) ≠ ℒ𝑛(𝑋).
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The Grothendieck ring of 𝒜𝒮-sets: 𝒜𝒮-sets
Definition – Arc-symmetric sets – Kurdyka 1988
We say that 𝑆 ⊂ 𝑀 is arc-symmetric if for all real analytic arcs 𝛾 ∶ (−1, 1) → 𝑀 , we have

Int(𝛾−1(𝑆)) ≠ ∅ ⟹ 𝛾−1(𝑆) = (−1, 1).

Definition – 𝒜𝒮-sets – Parusiński 2004
𝐴 ⊂ ℙ𝑛

ℝ is 𝒜𝒮 if it is semialgebraic and for all real analytic arcs 𝛾 ∶ (−1, 1) → ℙ𝑛
ℝ, we have

𝛾((−1, 0)) ⊂ 𝐴 ⟹ ∃𝜀 > 0, 𝛾((0, 𝜀)) ⊂ 𝐴.

Example
{(𝑥, 𝑦) ∈ ℝ2 | 𝑥2 + 𝑦2 = 1} ⧵ {(0, 1)} ∈ 𝒜𝒮

Non-example
{(𝑥, 𝑦) ∈ ℝ2 | 𝑥𝑦 = 1, 𝑥 ≥ 0} ∉ 𝒜𝒮

𝒜𝒮 is the boolean algebra spanned by semialgebraic sets which are arc-symmetric at ∞.
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The Grothendieck ring of 𝒜𝒮-sets: 𝒜𝒮-sets
Definition – 𝒜𝒮-sets – Parusiński 2004
𝐴 ⊂ ℙ𝑛

ℝ is 𝒜𝒮 if 𝐴 is semialgebraic and for all real analytic arcs 𝛾 ∶ (−1, 1) → ℙ𝑛
ℝ

𝛾((−1, 0)) ⊂ 𝐴 ⟹ ∃𝜀 > 0, 𝛾((0, 𝜀)) ⊂ 𝐴.

Example
Zariski-constructible sets.
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The Grothendieck ring of 𝒜𝒮-sets: 𝒜𝒮-sets
Definition – 𝒜𝒮-sets – Parusiński 2004
𝐴 ⊂ ℙ𝑛

ℝ is 𝒜𝒮 if 𝐴 is semialgebraic and for all real analytic arcs 𝛾 ∶ (−1, 1) → ℙ𝑛
ℝ

𝛾((−1, 0)) ⊂ 𝐴 ⟹ ∃𝜀 > 0, 𝛾((0, 𝜀)) ⊂ 𝐴.

Non-example
Set 𝑋 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑓 (𝑥, 𝑦) ≔ 𝑥2 − 𝑧𝑦2 = 0}, then 𝜋2(ℒ(𝑋)) ∉ 𝒜𝒮.

Indeed, define Γ ∶ (−1, 1) → ℒ2(𝑋) by Γ(𝑎) = 𝛾𝑎(𝑡) = (0, 𝑡2, 𝑎𝑡2) then
• If 𝑎 ≥ 0 then 𝛾𝑎(𝑡) = 𝜋2 (√𝑎𝑡3, 𝑡2, 𝑎𝑡2

) ∈ 𝜋2(ℒ(𝑋)).
• If 𝑎 < 0 then 𝛾𝑎 ∉ 𝜋2(ℒ(𝑋)), since 𝑓(𝑏𝑡3 + 𝑡4𝜂1(𝑡), 𝑡2 + 𝑡3𝜂2(𝑡), 𝑎𝑡2 + 𝑡3𝜂3(𝑡)) = (𝑏2 − 𝑎)𝑡6 + ⋯.

Notice that over an algebraically closed field of characteristic zero, the spaces of truncated arcs
are Zariski-constructible thanks to a theorem of Greenberg together with a theorem of Chevalley.
This is one of the reasons why the original construction doesn’t hold as it is over ℝ.
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The Grothendieck ring of 𝒜𝒮-sets: 𝐾0(𝒜𝒮)

Definition – The Grothendieck ring of 𝒜𝒮-sets
We define 𝐾0(𝒜𝒮) as the free abelian group spanned by [𝐴] for 𝐴 ∈ 𝒜𝒮 modulo

1 If there is 𝐴 ∼−→ 𝐵 a bijection with 𝒜𝒮 graph then [𝐴] = [𝐵].
2 𝐴 ⊂ 𝐵 ⟹ [𝐵 ⧵ 𝐴] = [𝐵] − [𝐴].

We obtain a ring using the cartesian product:
3 [𝐴 × 𝐵] = [𝐴][𝐵]

Notation
• 0 = [∅] • 1 = [{∗}] • 𝕃 ≔ [ℝ] • ℳ ≔ 𝐾0(𝒜𝒮) [𝕃−1]

ℳ is the localization of 𝐾0(𝒜𝒮) with respect to {1, 𝕃, 𝕃2, …}.
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The Grothendieck ring of 𝒜𝒮-sets: the virtual Poincaré polynomial
Theorem (the virtual Poincaré polynomial) – McCrory–Parusiński 2004, 2011
There exists a unique ring morphism 𝛽 ∶ 𝐾0(𝒜𝒮) → ℤ[𝑢] such that for 𝐴 compact non-singular

𝛽([𝐴]) = ∑ dim 𝐻𝑖(𝐴, ℤ2)𝑢𝑖

Example
𝛽(𝕃) = 𝛽 ([ℙ1

ℝ ⧵ {∗}]) = 𝛽 ([ℙ1
ℝ]) − 𝛽(1) = 𝑢 + 1 − 1 = 𝑢

Propositions
• For 𝐴 ≠ ∅, we have deg 𝛽([𝐴]) = dim 𝐴 and the leading coefficient is positive.
• 𝛽([𝐴])|𝑢=−1 = 𝜒𝑐(𝐴).
• 𝛽 is actually an isomorphism (Fichou, 2018), so 𝐾0(𝒜𝒮) ≃ ℤ[𝑢] and ℳ ≃ ℤ [𝑢, 𝑢−1].

The virtual Poincaré polynomial is one of the main reasons why 𝒜𝒮-sets are convenient for our
purpose: because of the cell decomposition, all the additive invariants of semialgebraic sets up
to semialgebraic homeomorphisms factorize through 𝜒𝑐 but 𝜒𝑐(𝑆1) = 0.
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The Grothendieck ring of 𝒜𝒮-sets: the virtual Poincaré polynomial
Recipe to compute the virtual Poincaré polynomial:

1 Compactify 2 Resolution of singularities

Example
𝑋 = {𝑥𝑦 = 1} ⊂ ℝ2, 𝑋̇ = 𝑋 ⊔ {∞}, 𝑋̃ = Bl0(𝑋̇).

Then
• 𝛽 ([𝑋]) = 𝛽 ([𝑋̇]) − 1
• 𝛽 ([𝑋̇]) − 1 = 𝛽 ([𝑆1]) − 2 = 𝑢 − 1
• 𝛽([𝑋]) = 𝑢 − 1
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The Grothendieck ring of 𝒜𝒮-sets: the virtual Poincaré polynomial

Remark – The virtual Poincaré polynomial is not a topological invariant:
𝑋 𝑋̃

So 𝛽 ([𝑋]) − 1 = 𝛽 ([𝑆1]) − 2 = 𝑢 − 1 and hence 𝛽 ([𝑋]) = 𝑢.

𝑌 ̃𝑌

So 𝛽 ([𝑌 ]) − 1 = 2𝛽 ([𝑆1]) − 2 = 2𝑢 and hence 𝛽 ([𝑌 ]) = 2𝑢 + 1.
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The motivic measure: stable sets
Definition – Piecewise trivial fibration
We say that 𝜋 ∶ 𝐴 → 𝐵 is a p.t.f. with fibre 𝐹 ∈ 𝒜𝒮 if its graph is an 𝒜𝒮-set and 𝐵 = ⨆𝑟

𝑖=1 𝐶𝑖 with
𝐶𝑖 ∈ 𝒜𝒮 and 𝜋−1(𝐶𝑖) ≃ 𝐶𝑖 × 𝐹 .

Then [𝐴] = [𝐵][𝐹 ].

Definition – Stable sets
We say that 𝐴 ⊂ ℒ(𝑋) is stable if

• 𝑚 ≫ 0 ⟹ 𝜋𝑚(𝐴) ∈ 𝒜𝒮
• 𝑚 ≫ 0 ⟹ 𝜋−1

𝑚 (𝜋𝑚(𝐴)) = 𝐴
• 𝑚 ≫ 0 ⟹ 𝜋𝑚+1(𝐴) → 𝜋𝑚(𝐴) is a p.t.f. with fibre ℝdim 𝑋

Definition – Measure of a stable sets
For 𝐴 ⊂ ℒ(𝑋) a stable set, we set 𝜇(𝐴) ≔ [𝜋𝑚(𝐴)] 𝕃−(𝑚+1) dim 𝑋 for 𝑚 ≫ 0.
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The motivic measure: cylinders

Definition – Cylinders
A cylinder is a subset of the form 𝜋−1

𝑛 (𝐶) where 𝐶 is an 𝒜𝒮-subset of ℒ𝑛(𝑋).

Examples
• ℒ(𝑋) = 𝜋−1

0 (𝑋)
• ℒ(𝑋, 𝑥) = 𝜋−1

0 ({𝑥})

Remark
When 𝑋 is non-singular, the truncation maps are locally trivial for the 𝒜𝒮-topology (and hence
are p.t.f. since it is a noetherian topology). Therefore the measure of a cylinder is well defined.

However, it is no longer the case when 𝑋 is singular: ℒ(𝑋) may not even be measurable.
Hence we need to enlarge the set of measurable sets.
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The motivic measure: the completed Grothendieck ring ℳ̂
Heuristic: a subset 𝐴 ⊂ ℒ(𝑋) is measurable if it can be approximated by stable sets.

Definition (algebraic version) – ℳ̂: completion w.r.t. the dimension
We set ℳ̂ ≔ lim←−− ℳ/ℱ𝑚ℳ where ℱ𝑚ℳ ≔ ⟨[𝑆]𝕃−𝑖, 𝑖 − dim 𝑆 ≥ 𝑚⟩.
It defines a ring filtration so that ℳ̂ has a ring structure:

• ℱ𝑚+1ℳ ⊂ ℱ𝑚ℳ
• ℱ𝑚ℳ ⋅ ℱ𝑛ℳ ⊂ ℱ𝑚+𝑛ℳ

Definition – Virtual dimension
The virtual dimension dim 𝛼 of 𝛼 ∈ ℳ is the unique integer 𝑚 such that 𝛼 ∈ ℱ−𝑚 ⧵ ℱ−𝑚+1.

Proposition
• dim 𝛼 = deg 𝛽(𝛼) • ℳ̂ = ℤ [𝑢]

q
𝑢−1y

Definition (topological version) – ℳ̂
We define ℳ̂ as the completion of ℳ for the non-archimedean norm ‖𝛼‖ ≔ 𝑒deg 𝛽(𝛼).
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The motivic measure: definition
Heuristic: a subset 𝐴 ⊂ ℒ(𝑋) is measurable if it can be approximated by stable sets.

Definition – Measurable set
𝐴 ⊂ ℒ(𝑋) is measurable if ∀𝑚 ∈ ℤ<0 there exist 𝐴𝑚, 𝐶𝑚 stable sets such that

• 𝐴Δ𝐴𝑚 ⊂ 𝐶𝑚
• dim 𝜇(𝐶𝑚) < 𝑚

Then the measure of 𝐴 is 𝜇(𝐴) ≔ lim
𝑚→−∞

𝜇(𝐴𝑚) ∈ ℳ̂.

Propositions
• Measurable sets form a boolean algebra.
• 𝜇(𝐴 ⊔ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵)
• If dim 𝜇(𝐴𝑛) → −∞ then 𝐴 = ∪𝐴𝑛 is measurable too and 𝜇(𝐴) = lim

𝑛→∞
𝜇 (∪𝑘≤𝑛𝐴𝑘).

• Cylinders are measurable sets.
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The motivic measure: in practice

Heuristic idea: everything works well for arcs away from singularities, so we take arcs outside a
neighborhood of the singular locus and then we collapse this neighborhood to the singular locus.

Set ℒ(𝑒)(𝑋) = {𝛾 ∈ ℒ(𝑋) | ∃ℎ ∈ 𝐼(𝑋sing), ℎ(𝛾(𝑡)) ≢ 0 mod 𝑡𝑒+1}.
Notice that ℒ(𝑋) = ℒ(𝑋sing) ⨆ ∪ℒ(𝑒)(𝑋) where 𝜇(ℒ(𝑋sing)) = 0.

Theorem
Let 𝐴 ⊂ ℒ(𝑋) be a cylinder then

• 𝐴 ∩ ℒ(𝑒)(𝑋) is stable for 𝑒 ≫ 0.
• lim

𝑒→+∞
dim 𝜇 (ℒ(𝑒)(𝑋) ⧵ ℒ(𝑒−1)(𝑋)) = −∞.

Hence 𝜇(𝐴) = lim
𝑒→+∞

𝜇 (𝐴 ∩ ℒ(𝑒)(𝑋))
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The motivic measure: the change of variables formula

Theorem – Change of variables formula, C. 2016
Let 𝜎 ∶ 𝑀 → 𝑋 be a generically 1-to-1 proper Nash map where 𝑀 is non-singular.
If 𝐴 ⊂ ℒ(𝑋) is measurable then 𝜎−1

∗ (𝐴) is too and

𝜇 (𝐴 ∩ Im(𝜎∗)) = ∑
𝑒∈ℕ

𝜇 (𝛾 ∈ 𝜎−1
∗ (𝐴), ord𝑡 (jac𝜎𝛾) = 𝑒) 𝕃−𝑒

where 𝜎∗ ∶ ℒ(𝑀) → ℒ(𝑋) is induced by 𝜎.

Remark: the assumptions are weaker than the original theorem over ℂ since 𝜎 is not assumed
to be birational.
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Application 1: a blow-Nash inverse mapping theorem
Theorem
Let 𝑓 ∶ (𝑋, 𝑥) → (𝑌 , 𝑦) a semialgebraic local homeomorphism between two real algebraic set
germs of pure dimension.
Assume that 𝜇(ℒ(𝑋, 𝑥)) = 𝜇(ℒ(𝑌 , 𝑦)), then
𝑓 is blow-Nash and ∃𝑐 > 0, | det(Jac𝑓)| > 𝑐 ⇔ 𝑓 −1 is blow-Nash and ∃𝑐′ > 0, | det(Jac𝑓 −1)| > 𝑐′.

Proof.
(𝑀, 𝐸)

𝜎

zzuuu
uu
uu
uu ̃𝜎

$$I
II

II
II

II

(𝑋, 𝑥) 𝑓
// (𝑌 , 𝑦)

𝜇 (ℒ(𝑋, 𝑥)) = 𝜇 (Im𝜎∗) = ∑ 𝜇 (𝛾 ∈ ℒ(𝑀, 𝐸) ∶ ord𝑡 jac𝜎(𝛾) ≤ 𝑒) 𝕃−𝑒

= ≤

𝜇 (ℒ(𝑌 , 𝑦)) ≥ 𝜇 (Im ̃𝜎∗) = ∑ 𝜇 (𝛾 ∈ ℒ(𝑀, 𝐸) ∶ ord𝑡 jac ̃𝜎(𝛾) ≤ 𝑒) 𝕃−𝑒
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Let 𝑓 ∶ (𝑋, 𝑥) → (𝑌 , 𝑦) a semialgebraic local homeomorphism between two real algebraic set
germs of pure dimension.
Assume that 𝜇(ℒ(𝑋, 𝑥)) = 𝜇(ℒ(𝑌 , 𝑦)), then
𝑓 is blow-Nash and ∃𝑐 > 0, | det(Jac𝑓)| > 𝑐 ⇔ 𝑓 −1 is blow-Nash and ∃𝑐′ > 0, | det(Jac𝑓 −1)| > 𝑐′.

Proof.
(𝑀, 𝐸)

𝜎

zzuuu
uu
uu
uu ̃𝜎

$$I
II

II
II

II

(𝑋, 𝑥) 𝑓
// (𝑌 , 𝑦) (ℝ, 0)𝛾

oo

̃𝛾nn

• So 𝜇 (ℒ(𝑌 , 𝑦)) = 𝜇 (Im ̃𝜎∗).
• Fact (C. 2016): blow-Nash ⇔ generically arc-analytic.

■
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Application 2: a lipschitz inverse mapping theorem

Theorem
Let 𝑓 ∶ (𝑋, 𝑥) → (𝑌 , 𝑦) a semialgebraic local homeomorphism between two real algebraic set
germs of pure dimension.
Assume that 𝜇(ℒ(𝑋, 𝑥)) = 𝜇(ℒ(𝑌 , 𝑦)), then
𝑓 is inner-Lipschitz and 𝑓 −1 is blow-Nash ⇔ 𝑓 −1 is inner-Lipschitz and 𝑓 is blow-Nash.

Proof.
• In the non-singular case: easy using the comatrix formula.
• General case: 𝐿-regular decomposition theorem (Parusiński, Kurdyka, Kurdyka–Orro)

■
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