Arcs & Jets

Introduction

 $K_0(AS)$

The motivic measure

Applications

Seminario de Singularidades Online

Arc spaces, motivic measure and Lipschitz geometry of real algebraic sets

joint work with T. FUKUI, K. KURDYKA and A. PARUSIŃSKI

Jean-Baptiste Campesato

University of Toronto

June 23, 2020

Introduction ●○	Arcs & Jets 000	The motivic measure	Applications
Introduction: go	bal		

•
$$X = \left\{ x \in \mathbb{R}^N \mid P_1(x) = \dots = P_r(x) = 0 \right\}$$
 a real algebraic set.
• $\mathcal{L}(X) \coloneqq \left\{ \gamma : (\mathbb{R}, 0) \xrightarrow{C^{\omega}} \mathbb{R}^N \mid \operatorname{Im}(\gamma) \subset X \right\}$ the space of arcs on X

Goal

Construct a *measure* $\mathcal{L}(X) \supset A \rightsquigarrow \mu(A) \in R \neq \mathbb{R}$ having some good properties, for instance:

- Measurable sets form a boolean algebra
- $\mu(A \sqcup B) = \mu(A) + \mu(B)$
- $\mathcal{L}(X)$ is measurable
- A change of variables formula

Introduction ○●	Arcs & Jets 000	The motivic measure	Applications
Introduction: his	story		

- Premotivic world:
 - The Nash problem (1968, published in 1995): study the singularities of a complex algebraic varieties through its space of holomorphic arcs.
 - In the 80s and early 90s: Hironaka, Lejeune-Jalabert, Kurdyka, Hickel, ...
 - 2012: Fernández de Bobadilla and Pe Pereira.
 - 2016: de Fernex and Docampo.
- Motivic avent:
 - Kontsevich 95: a first motivic measure in the non-singular case to prove Batyrev's conjecture.
 - Foundations of the motivic measure developed: Denef and Loeser, Batyrev, Looijenga, ...
 - Applications to birational geometry: Ein, Mustaţă, ...
- The real counterpart:
 - Koike and Parusiński 2004, Fichou 2005: motivic measure in the non-singular case to study singularities of real analytic functions.
 - C. 2016: in the singular case to study blow-Nash maps.
 - C.–Fukui–Kurdyka–Parusiński 2019: in the singular case to study inner-Lipschitz maps.

Problems $/\mathbb{R}$: no Nullstellensatz and no Chevalley's theorem!

Introduction	Arcs & Jets		The motivic measure	Applications
	000			
		_		

Arcs & Jets: the arc space

Fix
$$X = \left\{ x \in \mathbb{R}^N \mid P_1(x) = \dots = P_r(x) = 0 \right\}$$
 a real algebraic set.

Definition – Arc space

$$\mathcal{L}(X) \coloneqq \left\{ \gamma : (\mathbb{R}, 0) \xrightarrow{C^{\omega}} \mathbb{R}^{N} \, \middle| \, \mathrm{Im}(\gamma) \subset X \right\}$$

It behaves like an infinite dimensional algebraic set:

Example

Set
$$X = \{y^2 - x^3 = 0\} \subset \mathbb{R}^2$$
.

$$\mathcal{L}(X) = \{\gamma(t) = (a_0 + a_1t + a_2t^2 + \dots, b_0 + b_1t + b_2t^2 + \dots) \in \mathbb{R}\{t\}^2 \mid \gamma_2(t)^2 - \gamma_1(t)^3 = 0\}$$

$$= \{\gamma(t) \in \mathbb{R}\{t\}^2 \mid (b_0^2 - a_0^3) + (2b_0b_1 - 3a_1a_0^2)t + (b_1^2 + 2b_0b_2 - 3a_0a_1^2 - 3a_0^2a_2)t^2 + \dots = 0\}$$

$$= \{(a_0, a_1, \dots, b_0, b_1, \dots) \mid b_0^2 = a_0^3, 3a_1a_0^2 = 2b_0b_1, b_1^2 + 2b_0b_2 = 3a_0a_1^2 + 3a_0^2a_2, \dots\}$$

Introduction	Arcs & Jets ○●○	The motivic measure	Applications
Arcs & Jets: th	e jet spaces		

Fix
$$X = \left\{ x \in \mathbb{R}^N \mid P_1(x) = \dots = P_r(x) = 0 \right\}$$
 a real algebraic set.

Definition – Jet space

$$\mathcal{L}_{n}(X) \coloneqq \left\{ \gamma \in \mathcal{L}\left(\mathbb{R}^{N}\right) \big/ \text{mod } t^{n+1} \, \middle| \, \forall f \in I(X), \, f(\gamma(t)) \equiv 0 \mod t^{n+1} \right\}$$

It is an algebraic subset of $\mathbb{R}^{N(n+1)}$:

Example

Set
$$X = \left\{ y^2 - x^3 = 0 \right\} \subset \mathbb{R}^2$$
 then $I(X) = \left\langle y^2 - x^3 \right\rangle$.

$$\begin{aligned} \mathcal{L}_1(X) &= \left\{ \gamma \in \mathbb{R}\{t\}^2 / \text{mod} \, t^2 \, \big| \, \gamma_2(t)^2 \equiv \gamma_1(t)^3 \mod t^2 \right\} \\ &= \left\{ (a_0 + a_1 t, b_0 + b_1 t) \, \big| \, (b_0 + b_1 t)^2 \equiv (a_0 + a_1 t)^3 \mod t^2 \right\} \\ &= \left\{ (a_0, a_1, b_0, b_1) \, \big| \, b_0^2 = a_0^3, \, 3a_1 a_0^2 = 2b_0 b_1 \right\} \end{aligned}$$

Introduction	Arcs & Jets ○○●	The motivic measure	Applications
Arcs & Jets: tr	uncations		

Definition – Truncation morphisms

They are the natural projection maps $\bullet \pi_n : \mathcal{L}(X) \to \mathcal{L}_n(X) \bullet \pi_n^m : \mathcal{L}_m(X) \to \mathcal{L}_n(X)$ for $m \ge n$

Proposition

TFAE 1 *X* is non-singular **2** $\forall n, \pi_n$ is surjective **3** $\forall n, \pi_n^{n+1}$ is surjective

Example: $\mathbf{3} \implies \mathbf{1}$

Set
$$X = \{y^2 - x^3 = 0\} \subset \mathbb{R}^2$$
 then $\alpha = (0, 1) \in T_0 X \setminus C_0 X$.
Assume that $\alpha t + t^2 \eta(t) \in \mathcal{L}_2(X)$. Then $(t + t^2 \eta_2(t))^2 - (t\eta_1(t))^3 = t^2 + \cdots$.
Hence $\alpha t \in \mathcal{L}_1(X) \setminus \pi_1^2(\mathcal{L}_2(X))$.

Beware

When *X* is singular: $\pi_n(\mathcal{L}(X)) \neq \mathcal{L}_n(X)$.

Introduction	Arcs & Jets	$K_0(\mathcal{AS})$	The motivic measure	Applications
The Grothene	dieck ring of	ets		

Definition – Arc-symmetric sets – Kurdyka 1988

We say that $S \subset M$ is arc-symmetric if for all real analytic arcs $\gamma : (-1, 1) \to M$, we have $\operatorname{Int}(\gamma^{-1}(S)) \neq \emptyset \implies \gamma^{-1}(S) = (-1, 1).$

Definition – AS-sets – Parusiński 2004

 $A \subset \mathbb{P}^n_{\mathbb{R}}$ is \mathcal{AS} if it is semialgebraic and for all real analytic arcs $\gamma : (-1, 1) \to \mathbb{P}^n_{\mathbb{R}}$, we have $\gamma((-1, 0)) \subset A \implies \exists \varepsilon > 0, \ \gamma((0, \varepsilon)) \subset A$.

Example

$$\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \setminus \{(0, 1)\} \in \mathcal{AS}$$

Non-example

$$\{(x, y) \in \mathbb{R}^2 \mid xy = 1, x \ge 0\} \notin \mathcal{AS}$$

 \mathcal{AS} is the boolean algebra spanned by semialgebraic sets which are arc-symmetric at ∞ .

Introduction	Arcs & Jets 000	$K_0(\mathcal{AS})$	The motivic measure	Applications	
The Grothendieck ring of AS -sets: AS -sets					
Definition -	- \mathcal{AS} -sets – Parusi	ński 2004			
$ A \subset \mathbb{P}^n_{\mathbb{R}} \text{ is } \mathcal{AS} \text{ if } A \text{ is semialgebraic and for all real analytic arcs } \gamma : (-1, 1) \to \mathbb{P}^n_{\mathbb{R}} \\ \gamma((-1, 0)) \subset A \implies \exists \varepsilon > 0, \ \gamma((0, \varepsilon)) \subset A. $					
Example					

Zariski-constructible sets.

Introduction	Arcs & Jets 000	$K_0(\mathcal{AS})$	The motivic measure	Applications	
The Grothendieck ring of AS -sets: AS -sets					
Definition -	- \mathcal{AS} -sets – Parusi	ński 2004			
$ A \subset \mathbb{P}^n_{\mathbb{R}} \text{ is } \mathcal{AS} \text{ if } A \text{ is semialgebraic and for all real analytic arcs } \gamma : (-1,1) \to \mathbb{P}^n_{\mathbb{R}} \\ \gamma((-1,0)) \subset A \implies \exists \varepsilon > 0, \ \gamma((0,\varepsilon)) \subset A. $					
Non-exam					

Non-example

Set
$$X = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) \coloneqq x^2 - zy^2 = 0\}$$
, then $\pi_2(\mathcal{L}(X)) \notin \mathcal{AS}$.

Indeed, define Γ : $(-1, 1) \rightarrow \mathcal{L}_2(X)$ by $\Gamma(a) = \gamma_a(t) = (0, t^2, at^2)$ then

- If $a \ge 0$ then $\gamma_a(t) = \pi_2\left(\sqrt{at^3}, t^2, at^2\right) \in \pi_2(\mathcal{L}(X)).$
- If a < 0 then $\gamma_a \notin \pi_2(\mathcal{L}(X))$, since $f(bt^3 + t^4\eta_1(t), t^2 + t^3\eta_2(t), at^2 + t^3\eta_3(t)) = (b^2 a)t^6 + \cdots$.

Notice that over an algebraically closed field of characteristic zero, the spaces of truncated arcs are Zariski-constructible thanks to a theorem of Greenberg together with a theorem of Chevalley. This is one of the reasons why the original construction doesn't hold as it is over \mathbb{R} .

Introduction	Arcs & Jets	$K_0(AS)$	The motivic measure	Applications
		00000		

The Grothendieck ring of \mathcal{AS} -sets: $K_0(\mathcal{AS})$

Definition – The Grothendieck ring of AS-sets

We define $K_0(AS)$ as the free abelian group spanned by [A] for $A \in AS$ modulo

1 If there is $A \xrightarrow{\sim} B$ a bijection with \mathcal{AS} graph then [A] = [B].

$$2 A \subset B \implies [B \setminus A] = [B] - [A].$$

We obtain a ring using the cartesian product:

 $(3 [A \times B] = [A][B]$

Notation

•
$$0 = [\emptyset]$$
 • $1 = [\{*\}]$ • $\mathbb{L} \coloneqq [\mathbb{R}]$ • $\mathcal{M} \coloneqq K_0(\mathcal{AS})[\mathbb{L}^{-1}]$

 \mathcal{M} is the localization of $K_0(\mathcal{AS})$ with respect to $\{1, \mathbb{L}, \mathbb{L}^2, ...\}$.

The Grothendieck ring of AS-sets: the virtual Poincaré polynomial

Theorem (the virtual Poincaré polynomial) – McCrory–Parusiński 2004, 2011

There exists a unique ring morphism $\beta : K_0(\mathcal{AS}) \to \mathbb{Z}[u]$ such that for A compact non-singular $\beta([A]) = \sum \dim H_i(A, \mathbb{Z}_2)u^i$

Example

$$\beta(\mathbb{L}) = \beta\left(\left[\mathbb{P}^{1}_{\mathbb{R}} \setminus \{*\}\right]\right) = \beta\left(\left[\mathbb{P}^{1}_{\mathbb{R}}\right]\right) - \beta(1) = u + 1 - 1 = u$$

Propositions

• For $A \neq \emptyset$, we have deg $\beta([A]) = \dim A$ and the leading coefficient is positive.

•
$$\beta([A])_{|u|=-1} = \chi_c(A).$$

• β is actually an isomorphism (Fichou, 2018), so $K_0(\mathcal{AS}) \simeq \mathbb{Z}[u]$ and $\mathcal{M} \simeq \mathbb{Z}[u, u^{-1}]$.

The Grothendieck ring of AS-sets: the virtual Poincaré polynomial

Theorem (the virtual Poincaré polynomial) – McCrory–Parusiński 2004, 2011

There exists a unique ring morphism $\beta : K_0(\mathcal{AS}) \to \mathbb{Z}[u]$ such that for A compact non-singular $\beta([A]) = \sum \dim H_i(A, \mathbb{Z}_2)u^i$

Example

$$\beta(\mathbb{L}) = \beta\left(\left[\mathbb{P}^{1}_{\mathbb{R}} \setminus \{*\}\right]\right) = \beta\left(\left[\mathbb{P}^{1}_{\mathbb{R}}\right]\right) - \beta(1) = u + 1 - 1 = u$$

Propositions

• For $A \neq \emptyset$, we have deg $\beta([A]) = \dim A$ and the leading coefficient is positive.

•
$$\beta([A])_{|u=-1} = \chi_c(A).$$

• β is actually an isomorphism (Fichou, 2018), so $K_0(\mathcal{AS}) \simeq \mathbb{Z}[u]$ and $\mathcal{M} \simeq \mathbb{Z}[u, u^{-1}]$.

The virtual Poincaré polynomial is one of the main reasons why \mathcal{AS} -sets are convenient for our purpose: because of the cell decomposition, all the additive invariants of semialgebraic sets up to semialgebraic homeomorphisms factorize through χ_c but $\chi_c(S^1) = 0$.

The Grothendieck ring of AS-sets: the virtual Poincaré polynomial

Recipe to compute the virtual Poincaré polynomial: Compactify Resolution of singularities

Example

Then

• $\beta([X]) = \beta([\dot{X}]) - 1$

•
$$\beta([\dot{X}]) - 1 = \beta([S^1]) - 2 = u - 1$$

•
$$\beta([X]) = u - 1$$

Introduction	Arcs & Jets		The motivic measure ●○○○○○	Applications

The motivic measure: stable sets

Definition – Piecewise trivial fibration

We say that $\pi : A \to B$ is a p.t.f. with fibre $F \in AS$ if its graph is an AS-set and $B = \bigsqcup_{i=1}^{r} C_i$ with $C_i \in AS$ and $\pi^{-1}(C_i) \simeq C_i \times F$.

Then [A] = [B][F].

Definition – Stable sets

We say that $A \subset \mathcal{L}(X)$ is stable if

•
$$m \gg 0 \implies \pi_m(A) \in \mathcal{AS}$$

•
$$m \gg 0 \implies \pi_m^{-1}(\pi_m(A)) = A$$

• $m \gg 0 \implies \pi_{m+1}(A) \to \pi_m(A)$ is a p.t.f. with fibre $\mathbb{R}^{\dim X}$

Definition – Measure of a stable sets

For $A \subset \mathcal{L}(X)$ a stable set, we set $\mu(A) \coloneqq \left[\pi_m(A)\right] \mathbb{L}^{-(m+1)\dim X}$ for $m \gg 0$.

Introduction	Arcs & Jets	The motivic measure	Applications
		00000	

The motivic measure: cylinders

Definition – Cylinders

A cylinder is a subset of the form $\pi_n^{-1}(C)$ where *C* is an *AS*-subset of $\mathcal{L}_n(X)$.

Examples

•
$$\mathcal{L}(X) = \pi_0^{-1}(X)$$

•
$$\mathcal{L}(X, x) = \pi_0^{-1}(\{x\})$$

Remark

When X is non-singular, the truncation maps are locally trivial for the AS-topology (and hence are p.t.f. since it is a noetherian topology). Therefore the measure of a cylinder is well defined.

However, it is no longer the case when X is singular: $\mathcal{L}(X)$ may not even be measurable. Hence we need to enlarge the set of measurable sets.

The motivic measure: the completed Grothendieck ring $\hat{\mathcal{M}}$

Heuristic: a subset $A \subset \mathcal{L}(X)$ is measurable if it can be approximated by stable sets.

Definition (algebraic version) – $\hat{\mathcal{M}}$: completion w.r.t. the dimension

We set
$$\hat{\mathcal{M}} := \lim_{\longleftarrow} \mathcal{M} / \mathcal{F}^m \mathcal{M}$$
 where $\mathcal{F}^m \mathcal{M} := \langle [S] \mathbb{L}^{-i}, i - \dim S \geq m \rangle$.

It defines a ring filtration so that $\hat{\mathcal{M}}$ has a ring structure:

•
$$\mathcal{F}^{m+1}\mathcal{M} \subset \mathcal{F}^m\mathcal{M}$$

•
$$\mathcal{F}^m \mathcal{M} \cdot \mathcal{F}^n \mathcal{M} \subset \mathcal{F}^{m+n} \mathcal{M}$$

Definition – Virtual dimension

The virtual dimension dim α of $\alpha \in \mathcal{M}$ is the unique integer *m* such that $\alpha \in \mathcal{F}^{-m} \setminus \mathcal{F}^{-m+1}$.

The motivic measure: the completed Grothendieck ring $\hat{\mathcal{M}}$

Heuristic: a subset $A \subset \mathcal{L}(X)$ is measurable if it can be approximated by stable sets.

Definition (algebraic version) – $\hat{\mathcal{M}}$: completion w.r.t. the dimension

We set $\hat{\mathcal{M}} := \lim_{\longleftarrow} \mathcal{M} / \mathcal{F}^m \mathcal{M}$ where $\mathcal{F}^m \mathcal{M} := \langle [S] \mathbb{L}^{-i}, i - \dim S \geq m \rangle$.

Definition – Virtual dimension

The virtual dimension dim α of $\alpha \in \mathcal{M}$ is the unique integer *m* such that $\alpha \in \mathcal{F}^{-m} \setminus \mathcal{F}^{-m+1}$.

Proposition

• dim $\alpha = \deg \beta(\alpha)$ • $\hat{\mathcal{M}} = \mathbb{Z} \left[u \right] \left[\left[u^{-1} \right] \right]$

Definition (topological version) – $\hat{\mathcal{M}}$

We define $\hat{\mathcal{M}}$ as the completion of \mathcal{M} for the non-archimedean norm $\|\alpha\| \coloneqq e^{\deg \beta(\alpha)}$.

Introduction	Arcs & Jets	The motivic measure	Applications
		000000	

The motivic measure: definition

Heuristic: a subset $A \subset \mathcal{L}(X)$ is measurable if it can be approximated by stable sets.

Definition – Measurable set

 $A \subset \mathcal{L}(X)$ is measurable if $\forall m \in \mathbb{Z}_{<0}$ there exist A_m, C_m stable sets such that

- $A \Delta A_m \subset C_m$
- dim $\mu(C_m) < m$

Then the measure of *A* is $\mu(A) \coloneqq \lim_{m \to -\infty} \mu(A_m) \in \hat{\mathcal{M}}$.

Propositions

- Measurable sets form a boolean algebra.
- $\mu(A \sqcup B) = \mu(A) + \mu(B)$
- If dim $\mu(A_n) \to -\infty$ then $A = \cup A_n$ is measurable too and $\mu(A) = \lim_{n \to \infty} \mu\left(\cup_{k \le n} A_k\right)$.
- Cylinders are measurable sets.

Introduction	Arcs & Jets	The motivic measure	Applications
		000000	
The motiv			

Heuristic idea: everything works well for arcs away from singularities, so we take arcs outside a neighborhood of the singular locus and then we collapse this neighborhood to the singular locus.

Set $\mathcal{L}^{(e)}(X) = \{ \gamma \in \mathcal{L}(X) \mid \exists h \in I(X_{\text{sing}}), h(\gamma(t)) \neq 0 \mod t^{e+1} \}.$ Notice that $\mathcal{L}(X) = \mathcal{L}(X_{\text{sing}}) \bigsqcup \cup \mathcal{L}^{(e)}(X)$ where $\mu(\mathcal{L}(X_{\text{sing}})) = 0.$

Theorem

Let $A \subset \mathcal{L}(X)$ be a cylinder then

• $A \cap \mathcal{L}^{(e)}(X)$ is stable for $e \gg 0$.

•
$$\lim_{e \to +\infty} \dim \mu \left(\mathcal{L}^{(e)}(X) \setminus \mathcal{L}^{(e-1)}(X) \right) = -\infty.$$

Hence $\mu(A) = \lim_{e \to +\infty} \mu\left(A \cap \mathcal{L}^{(e)}(X)\right)$

Introduction	Arcs & Jets	The motivic measure	Applications
		00000	

The motivic measure: the change of variables formula

Theorem – Change of variables formula, C. 2016

Let $\sigma : M \to X$ be a generically 1-to-1 proper Nash map where *M* is non-singular. If $A \subset \mathcal{L}(X)$ is measurable then $\sigma_*^{-1}(A)$ is too and

$$\mu\left(A \cap \operatorname{Im}(\sigma_*)\right) = \sum_{e \in \mathbb{N}} \mu\left(\gamma \in \sigma_*^{-1}(A), \operatorname{ord}_t\left(\operatorname{jac}_{\sigma} \gamma\right) = e\right) \mathbb{L}^{-e}$$

where $\sigma_* : \mathcal{L}(M) \to \mathcal{L}(X)$ is induced by σ .

Remark: the assumptions are weaker than the original theorem over \mathbb{C} since σ is not assumed to be birational.

Introduction	Arcs & Jets	The motivic measure	Applications
			•0

Application 1: a blow-Nash inverse mapping theorem

Theorem

Let $f : (X, x) \rightarrow (Y, y)$ a semialgebraic local homeomorphism between two real algebraic set germs of pure dimension.

Assume that $\mu(\mathcal{L}(X, x)) = \mu(\mathcal{L}(Y, y))$, then

f is blow-Nash and $\exists c > 0$, $|\det(\operatorname{Jac} f)| > c \Leftrightarrow f^{-1}$ is blow-Nash and $\exists c' > 0$, $|\det(\operatorname{Jac} f^{-1})| > c'$.

Proof.

$$(M, E)$$

$$(X, x) \xrightarrow{\sigma} (Y, y)$$

$$\mu(\mathcal{L}(X, x)) = \mu(\operatorname{Im}\sigma_{*}) = \sum \mu(\gamma \in \mathcal{L}(M, E) : \operatorname{ord}_{t} \operatorname{jac}_{\sigma}(\gamma) \leq e) \mathbb{L}^{-e}$$

$$\|\mu(\mathcal{L}(Y, y)) \geq \mu(\operatorname{Im}\tilde{\sigma}_{*}) = \sum \mu(\gamma \in \mathcal{L}(M, E) : \operatorname{ord}_{t} \operatorname{jac}_{\tilde{\sigma}}(\gamma) \leq e) \mathbb{L}^{-e}$$

Introduction	Arcs & Jets	The motivic measure	Applications
			•0

Application 1: a blow-Nash inverse mapping theorem

Theorem

Let $f : (X, x) \rightarrow (Y, y)$ a semialgebraic local homeomorphism between two real algebraic set germs of pure dimension.

Assume that $\mu(\mathcal{L}(X, x)) = \mu(\mathcal{L}(Y, y))$, then

f is blow-Nash and $\exists c > 0$, $|\det(\operatorname{Jac} f)| > c \Leftrightarrow f^{-1}$ is blow-Nash and $\exists c' > 0$, $|\det(\operatorname{Jac} f^{-1})| > c'$.

Proof.

- So $\mu(\mathcal{L}(Y, y)) = \mu(\operatorname{Im} \tilde{\sigma}_*).$
- Fact (C. 2016): blow-Nash ⇔ generically arc-analytic.

Introduction	Arcs & Jets	The motivic measure	Applications
			00

Application 2: a lipschitz inverse mapping theorem

Theorem

Let $f : (X, x) \to (Y, y)$ a semialgebraic local homeomorphism between two real algebraic set germs of pure dimension. Assume that $\mu(\mathcal{L}(X, x)) = \mu(\mathcal{L}(Y, y))$, then f is inner-Lipschitz and f^{-1} is blow-Nash $\Leftrightarrow f^{-1}$ is inner-Lipschitz and f is blow-Nash.

Proof.

- In the non-singular case: easy using the comatrix formula.
- General case: L-regular decomposition theorem (Parusiński, Kurdyka, Kurdyka–Orro)