STRING TOPOLOGY FOR SPHERES.

LUC MENICHT*
WITH AN APPENDIX BY GERALD GAUDENS AND LUC MENICHI

ABSTRACT. Let M be a compact oriented d-dimensional smooth
manifold. Chas and Sullivan have defined a structure of Batalin-
Vilkovisky algebra on H,(LM). Extending work of Cohen, Jones
and Yan, we compute this Batalin-Vilkovisky algebra structure
when M is a sphere S¢, d > 1. In particular, we show that
M., (LS?; Fy) and the Hochschild cohomology H H*(H*(S?); H*(S?))
are surprisingly not isomorphic as Batalin-Vilkovisky algebras, al-
though we prove that, as expected, the underlying Gerstenhaber
algebras are isomorphic. The proof requires the knowledge of the
Batalin-Vilkovisky algebra H,(Q2S53;F,) that we compute in the
Appendix.

Dedicated to Jean-Claude Thomas, on the occasion of his 60th
birthday

1. INTRODUCTION

Let M be a compact oriented d-dimensional smooth manifold. De-
note by LM := map(S*, M) the free loop space on M. In 1999,
Chas and Sullivan [2] have shown that the shifted free loop homology
H,.(LM) := H,;q(LM) has a structure of Batalin-Vilkovisky algebra
(Definition 5). In particular, they showed that H.(LM) is a Gersten-
haber algebra (Definition 8). This Batalin-Vilkovisky algebra has been
computed when M is a complex Stiefel manifold [25] and very recently
over Q when M is a K(m, 1) [28]. In this paper, we compute the
Batalin-Vilkovisky algebra H,(LM;k) when M is a sphere S™, n > 1
over any commutative ring k (Theorems 10, 16, 17, 24 and 25).

In fact, few calculations of this Batalin-Vilkovisky algebra structure
or even of the underlying Gerstenhaber algebra structure have been
done because the following conjecture has not yet been proved.

Conjecture 1. (due to [2, “dictionary” p. 5] or [7]?)

Key words and phrases. String Topology, Batalin-Vilkovisky algebra, Gersten-
haber algebra, Hochschild cohomology, free loop space.
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If M is simply connected then there is an isomorphism of Gersten-
haber algebras H,(LM) = HH*(S*(M); S*(M)) between the free loop
space homology and the Hochschild cohomology of the algebra of singu-
lar cochains on M.

In [7, 5], Cohen and Jones proved that there is an isomorphism of
graded algebras over any field

H,(LM) = HH*(S*(M); §*(M)).

Over the reals or over the rationals, two proofs of this isomorphism of
graded algebras have been given by Merkulov [23] and Félix, Thomas,
Vigué-Poirrier [11]. Motivated by this conjecture, Westerland [30] has
computed the Gerstenhaber algebra H H*(S*(M;Fy); S*(M;F5)) when
M 1is a sphere or a projective space.

What about the Batalin-Vilkovisky algebra structure?

Suppose that M is formal over a field, then since the Gerstenhaber
algebra structure on Hochschild cohomology is preserves by quasi-
isomorphism of algebras [10, Theorem 3|, we obtain an isomorphism of
Gerstenhaber algebras

(2) HH"(5"(M); S*(M)) = HH*(H*(M); H*(M)).
Poincaré duality induces an isomorphism of H*(M )-modules
©: H (M) — H*(M)".
Therefore, we obtain the isomorphism
HH"(H*(M); H*(M)) = HH"(H*(M); H*(M)")

and the Gerstenhaber algebra structure on HH*(H*(M); H*(M)) ex-
tends to a Batalin-Vilkovisky algebra [26, 22, 20] (See above Proposi-
tion 20 for details). This Batalin-Vilkovisky algebra structure is further
extended in [27, 9, 19, 21] to a richer algebraic structure. It is natural to
conjecture that this Batalin-Vilkovisky algebra on HH*(H*(M); H*(M))
is isomorphic to the Batalin-Vilkovisky algebra H,(LAM). We show
(Corollary 30) that this is not the case over Fy when M is the sphere
S2. See [6, Comments 2. Chap. 1] or the papers of Tradler and
Zeinalian [26, 27] for a related conjecture when M is not assumed to
be necessarly formal. On the contrary, we prove (Corollary 23) that
Conjecture 1 is satisfied for M = S? over Fy.

Acknowledgment: We wish to thank Ralph Cohen and Stanford
Mathematics department for providing a friendly atmosphere during

my six months of “delegation CNRS”. We would like also to thank
Yves Félix for a discussion simplifying the proof of Theorem 10.
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2. THE BATALIN-VILKOVISKY ALGEBRA STRUCTURE ON H,(LM).

In this section, we recall the definition of the Batalin-Vilkovisky al-
gebra on H, (LM;k) given by Chas and Sullivan [2] over any commuta-
tive ring k and deduce that this Batalin-Vilkovisky algebra H, (LM;k)
behaves well with respect to change of rings.

We first recall the definition of the loop product following Cohen and
Jones [7, 6]. Let M be a closed oriented smooth manifold of dimension
d. The inclusion e : map(S* VvV S', M) < LM x LM can be viewed as
a codimension d embedding between infinite dimension manifolds [24,
Proposition 5.3]. Denote by v its normal bundle. Let 7, : LM x
LM — map(S* v S', M) its Thom-Pontryagin collapse map. Recall
that the umkehr (Gysin) map e, is the composite of 7, and the Thom
isomorphism:

H(LMxLM;k) 5 1, (map(S'vs', M)";k) % H._y(map(S'Vs', M); k)

The Thom isomorphism is given by taking a relative cap product N
with a Thom class for v, u, € H%(map(S'V S*, M)";k). A Thom class
with coefficients in Z, uz, gives rise to a Thom class uy with coefficients
in k, under the morphism

H(map(S* v S*, M); Z) — H(map(S* v S*, M); k)

induced by the ring homomorphism Z — k [16, p. 441-2]. So we have
the commutative diagram

H,(LM x LM;Z) —= H,_y(map(S* v S*, M); Z)

| |

H,(LM x LM;k) —= H,_4(map(S* v S*, M);k)
Let v : map(S' Vv S', M) — LM be the map obtained by composing
loops. The loop product is the composite

H.(LM;k) ® H.(LM;k) — H.(LM x LM;k
S H,_g(map(S* v S', M); k) Hear) H,._q(LM;k)
So clearly, we have proved

Lemma 3. The morphism of abelian groups H,(LM;7Z) — H,(LM;k)
induced by Z. — k is a morphism of graded rings.
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Suppose that the circle S! acts on a topological space X. Then we
have an action of the algebra H,(S') on H,(X),

H,(SY)®@ H(X) = H.(X).

Denote by [S1] the fundamental class of the circle. Then we define an
operator of degree 1, A : H,(X;k) — H,,1(X;k) which sends x to the
image of [S'] ® z under the action. Since [S']? = 0, Ao A = 0. The
following lemma is obvious.

Lemma 4. Let X be a S'-space. We have the commutative diagram
H.(X:Z) —== Ho1 (X, Z)

l l

H,(X:k) —2> Hop1 (X k)
where the vertical maps are induced by the ring homomorphism 7 — k.

The circle S* acts on the free loop space on M by rotating the loops.
Therefore we have a operator A on H,(LM). Chas and Sullivan [2]
have showed that H, (LM ) equipped with the loop product and the A
operator, is a Batalin-Vilkovisky algebra.

Definition 5. A Batalin-Vilkovisky algebra is a commutative graded
algebra A equipped with an operator A : A — A of degree 1 such that
AoA =0 and

(6) A(abe) = A(ab)e + (—D)aA(be) + (—1)1=DPIpA (ac)
— (Aa)be — (=D)lla(Ab)e — (1) Plab(Ac).
Consider the bracket { , } of degree +1 defined by
{a,b} = (1) (A(ab) — (Aa)b — (=1)la(AD))

for any a, b € A. (6) is equivalent to the following relation called the
Poisson relation:

(7) {a,bc} = {a,byc + (—1)1aFDlIpLg e}

Getzler [14, Proposition 1.2] has shown that the { , } is a Lie bracket
and therefore that a Batalin-Vilkovisky algebra is a Gerstenhaber al-
gebra.

Definition 8. A Gerstenhaber algebra is a commutative graded algebra
A equipped with a linear map {—,—} : A® A — A of degree 1 such
that:

a) the bracket {—, —} gives to A a structure of graded Lie algebra of
degree 1. This means that for each a, b and c € A
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{a,b} = —(—1)(a+DA+D £ g1 and
{a,{b,c}} = {{a, b}, c} + (=)D {a, c}}.

b) the product and the Lie bracket satisfy the Poisson relation (7).
Using Lemma 3 and Lemma 4, we deduce
Proposition 9. The k-linear map
H.(LM;Z) ®z k — H,(LM;k)
is an inclusion of Batalin-Vilkovisky algebras.
In particular, by the universal coefficient theorem,
H.(LM; Z) ®7 Q = H.(LM; Q).

More generally, this Proposition tell us that if Tor”(H, (LM;Z),k) = 0
then the Batalin-Vilkovisky algebra H., (LM; Z) determines the Batalin-
Vilkovisky algebra HL, (LM;k).

3. THE CIRCLE AND AN USEFUL LEMMA.

In this section, we compute the structure of the Batalin-Vilkovisky
algebra on the homology of the free loop space on the circle S* using
a Lemma which gives information on the image of A on elements of
lower degree in H,(LM).

Theorem 10. As a Batalin-Vilkovisky algebra, the homology of the
free loop space on the circle is given by

H.(LSY: k) 2 k[Z] ® Aa_;.
Denote by x a generator of Z. The operator A is
Alr'®@a ) =i(z'®1), A@'®1)=0
foralli € Z.

Let X be a pointed topological space. Consider the free loop fibration

QX < LX 5 X. Denote by hury : mn(X) — H,(X) the Hurewicz
map.

Lemma 11. Let n € N. Let f € m,41(X). Denote by f € m,(QX) the
adjoint of f. Then*

(H.(ev) o Ao H,(j) o hurgx) (f) = hurx(f).

'Added in 2014: Since the homology suspension o, is the composite H, (ev) o
Ao H,(j), this Lemma is well-known: McCleary Lemma 6.11.
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Proof. Take in homology the image of [S'] ® [S™] in the following com-
mutative diagram

actr x

1 Stxj 1
Stx QX —8'x LX —LX

SleT \Lev

St XS”HSl/\S"?X
where actyx : St x LX — LX is the action of the circle on LX. ]

Proof of Theorem 10. More generally, let G be a compact Lie group.
Consider the homeomorphism Og : QG x G = LG which sends the
couple (w, g) to the free loop ¢t — w(t)g. In fact, O¢ is an isomorphism
of fiberwise monoids. Therefore by [15, part 2) of Theorem 8.2],

H,(O¢) : H.(Q2G) @ H,.(G) — H.(LG)
is a morphism of graded algebras. Since H,(S') has no torsion,
H.(0g1) : H,(QS") ® H,(S') = H,(LS")

is an isomorphism of algebras. Since A preserves path-connected com-
ponents,

A" ®a_y) = alz' @1)
where o € k. Denote by €z the canonical augmentation of the group

ring k[Z]. Since H,(ev o Og1) = gz ® H.(SY),
(H,(ev) o A)(z" ® a_1) = al.

On the other hand, applying Lemma 11, to the degree i map S' — S*,
we obtain that (H,(ev) o Ao H,(j))(x%) = il. Therefore a = i. O

4. COMPUTATIONS USING HOCHSCHILD HOMOLOGY.

In this section, we compute the Batalin-Vilkovisky algebra H., (LS™),
n > 2, using the following elementary technique:

The algebra structure has been computed by Cohen, Jones and Yan
using the Serre spectral sequence [8]. On the other hand, the action
of H,(S') on H,(LS™) can be computed using Hochschild homology.
Using the compatibility between the product and A, we determine the
Batalin-Vilkovisky algebra H,(LS™) up to isomorphism. This elemen-
tary technique will fail for H,(LS?).

Let A be an augmented differential graded algebra. Denote by sA
the suspension of the augmentation ideal A, (sz)i = A;_;. Let dy be
the differential on the tensor product of complexes A ® T(sA). The
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(normalized) Hochschild chain complex, denoted C.(4; A), is the com-
plex (A ® T(sA),d; + ds) where

dyalsay| - - - |sap] =(—1)1%aay[sas| - - - |saz)
k—1
+ D _(=D)%a[sa|- - [sa;a;] - - [say]
i=1
— (=1)lsarlEr-1g, afsaq | - - - [sap_1];

Here ¢; = |a| + |sa1| + - - - + |say].
Connes boundary map B is the map of degree +1

B:A® (sA)® = A® (sA)®PH!

defined by
p
B(ao[sai] ... |sap]) = Z(—l)|S“°'“Sai‘1”5a"“'5“”|[sai| o sap|sag| . .. |sai—q].
=0
Up to the isomorphism s?(A®PHD) — Ax(sA)®P sP(aglay] .. . |ay)) —
(—1)Plaoltp=Dlarlt+lap-1lg lsq,] . . . [sa,] , our signs coincides with those
of [29].

The Hochschild homology of A (with coefficient in A) is the homology
of the Hochschild chain complex:

HH,.(A; A) .= H.(C.(A; A)).

The Hochschild cohomology of A (with coefficient in AY) is the homol-
ogy of the dual of the Hochschild chain complex:

HH*(A; AY) := H,(C.(A; A)Y).

Consider the dual of Connes boundary map, BY(p) = (—1)¥lp o B.
On HH*(A; AY), BY defines an action of H,(S").

Example 12. Let n > 2. Let k be any commutative ring. Let A :=
H*(S™) = Ax_,, be the exterior algebra on a generator of lower degree
—n. Denote by [sx]* := 1[sx|...|sz] and z[sx]¥ := z[sz|...|sz] the
elements of C,(A; A) where the term sx appears k times. These ele-
ments form a basis of C,(4; A). Denote by [sx]*V, z[sz]*V, k > 0, the
dual basis. The differential d¥ on C.(A; A)Y is given by d"([sz]*V) = 0
and d"(z[sz]"V) = £ (1 — (=1)*D) [sg]*TDV_ The dual of Connes
boundary map B" is given by

B ([sa]") = {

(—1)"*1k x[w](kq)v if (k+1)(n+ 1) is even,
0 if (k+1)(n+1) is odd
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and BY(x[sz]*V) = 0. We remark that [sz]*" is of (lower) degree k(n —
1) and z[sz]*V of degree n + k(n — 1).

Theorem 13. [17] Let X be a simply connected space such that H.(X;k)
is of finite type in each degree. Then there is a natural isomorphism of
H.(SY)-modules between the homology of the free loop space on X and
the Hochschild cohomology of the algebra of singular cochain S*(X;k):

(14) H.(LX) = HH*(S*(X;k); S*(X:k)Y).

In this paper, when we will apply this theorem, H,(X;k) is assumed
to be k-free of finite type in each degree and X will be always k-formal:
the algebra S*(X;k) will be linked by quasi-isomorphisms of cochain
algebras to H,.(X;k). Therefore
(15)  HH*(S"(X;k); S"(X;k)Y) = HH"(H"(X:;k); H*(X;k)").
Theorem 16. Forn > 1 odd, as a Batalin-Vilkovisky algebra,

H.(LS™ k) = k[up—1] @ Aa_y,,

Aty ® ap) = i(u, 7y ® 1),
Proof. For the algebra structure, Cohen, Jones and Yan [8] proved
that H,.(LS™Z) = k[u,—1] ® Aa_,, when k = Z. Their proof works
over any k (alternatively, using Proposition 9, we could assume that
k = Z). Computing Connes boundary map on HH*(H*(S™); H.(S™))
(Example 12), we see that A on H,(LS™;k) is null in even degree
and in degree —n, and is an isomorphism in degree —1. Therefore
Al ®1) =0, Al®a_,) =0 and A(u,_1 ® a_,) = al where
« is invertible in k. Replacing a_, by éa_n or u,_1 by éun_l, we
can assume up to isomorphisms that A(u, 1 ® a_,) = 1. Therefore
{tp_1,a_,} = 1. Using the Poisson relation (7), {u!,_,,a_,} = iu’}.

Therefore A(v! |, ®@a_,) =i(u’ | ®1). O

Theorem 17. For n > 2 even, there exists a constant €y € Fy such
that as a Batalin-Vilkovisky algebra,

Zla,v]
(a2, ab, 2av)

+oo +oo +oo 7
= @ ng(nfl) ® @ Zh_1v" ® Za_, ® @ ﬁavk
k=0 k=0 k=1
with Vk >0, A(v*) =0, A(av®) =0 and
NG {(Qk + 1ok + gpavt ™ if n =2

H.(LS™7Z) = Ab®

(2k + 1)k if n > 4.
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Proof. For the algebra structure, Cohen, Jones and Yan [8] proved the
equality. Computing Connes boundary map on HH*(H*(S™); H.(S™))
(Example 12), we see that A on H,(LS™;k) is null in even degree and
is injective in odd degree.

Case n # 2: this case is simple, since all the generators of H, (LS™),
V¥, ¥ and av®, k > 0, have different degrees. Using Example 12, we
also see that for all £ > 0,

A H g yorn-1) = Zb_v" — Hog(n—1) = Zo*
has cokernel isomorphic to ﬁ. Therefore A(bv*) = £(2k+1)v*. By
replacing b_; by —b_1, we can assume up to isomorphims that A(b) = 1.
Let k > 1. Let oy, € {—2k — 1,2k +1} such that A(bv*) = aov*. Using
formula (6), we obtain that A(bv*v*) = (204 — 1)v**. We know that
A(bv?*) = £(4k + 1)v?*. Therefore oy, must be equal to 2k + 1.

Case n = 2: this case is complicated, since for k > 0, v* and av*
have the same degree. Using Example 12, we also see that

+1

Z
A H71+2k = Zb,ﬂ}k — Hgk = ka © ﬁavkﬂ
has cokernel, denoted CokerA, isomorphic to ﬁ <) %. There exists
unique ay € Z — {0} and ¢, € % such that A(bv*) = ago* + grav**t,
The injective map A fits into the commutative diagram of short exact
sequences (Noether’s Lemma)

0 0 0
0——H_; 10 — H_119 0 0
X2
0——H_1 0 2 Hyy, CokerA —= 0
A _
0 % 2aZkZ D % CokerA —=0
0 0

The cokernel of A, denoted CokerA is of cardinal 2|ay|. So |ay| =
2k + 1. Therefore A(bv*) = £(2k + 1)v* + epav™ L.

By replacing b_; by —b_;, we can assume up to isomorphims that
A(b) = 1+ egav. Using formula (6), we obtain that

A(bFo!) = (a + ap — Do + (e + g — g0)av®



LWC MENICHI* WITH AN APPENDIX BY GERALD GAUDENS AND LUC MENICHI

Therefore
A ok) = (20 — 1) + ggav® ™ = £(4k + D)o + egpav®* 1.

So ap = 2k + 1, Eok — &p and €ok+1 = €2k + €1 — &9 = €1.

The map © : H,(LS?) — H,(LS?) given by O(b_jv*) = b_jvF,
O(v*) = vF +kav*tt O(av®) = av®, k > 0 is an involutive isomorphism
of algebras. Therefore, by replacing v by v + av?, we can assume that
€1 = 9. So we have proved

A(F) = (2k + 1)v* + gpar™™, k> 0.
U

These two cases £ = 0 and g = 1 correspond to two non-isomorphic
Batalin-Vilkovisky algebras whose underlying Gerstenhaber algebras
are the same. Therefore even if we have not yet computed the Batalin-
Vilkovisky algebra H,(LS?;Z), we have computed its underlying Ger-
stenhaber algebra. Using the definition of the bracket, straightforward
computations give the following corollary.

Corollary 18. Forn > 2 even, as Gerstenhaber algebra

Z[G_n, UZ(n—l)]
(a2, ab, 2av)
with {v* v} = 0, {boF v} = =20* {bk '} = 2(k — [)bo*H,

{a,v'} = 0, {avF, 00"} = —(21 + )av*™ and {av*,av'} = 0 for all
k1> 0.

H,(LS™Z) = Ab_y ®

5. WHEN HOCHSCHILD COHOMOLOGY IS A BATALIN-VILKOVISKY
ALGEBRA

In this section, we recall the structure of Gerstenhaber algebra on
the Hochschild cohomology of an algebra whose degrees are bounded.
We recall from [26, 22, 27, 20] the Batalin-Vilkovisky algebra on the
Hochschild cohomology of the cohomology H*(M) of a closed oriented
manifold M. We compute this Batalin-Vilkovisky algebra H H*(H*(M); H*(M))
when M is a sphere.

Through this section, we will work over the prime field Fy. Let A
be an augmented graded algebra such that the augmentation ideal A
is concentrated in degree < —2 and bounded below (or concentrated
in degree > 0 and bounded above). Then the (normalized) Hochschild
cochain complex, denoted C*(A, A), is the complex

Hom(T'sA, A) = @,>oHom((sA)*P, A)
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with a differential do. For f € Hom((sA)®P, A), the differential dof €
Hom((sA)®P+1 A) is given by

(dof)([sar] - - - |sapi1]) == ar f([saz] - - - [sap1a])
+ Z flsar -+ |s(@iaira)] - - sapa]) + f([sar] - - [sap])ay

The Hochschild cohomology of A with coefficient in A is the homology
of the Hochschild cochain complex:
HH*(A; A) := H.(C*(A; A)).

We remark that H H*(A; A) is bigraded. Our degree is sometimes called
the total degree: sum of the external degree and the internal degree.
The Hochschild cochain complex C*(A, A) is a differential graded al-
gebra. For f € Hom((sA)®?, A) and g € Hom((sA)®?, A), the (cup)
product of f and g, f U g € Hom((sA)®P%4, A) is defined by

(fUg)([sa| - [sapyy]) == f([sar] - [sap])g([sapsi] - - [sapiq))-

The Hochschild cochain complex C*(A, A) has also a Lie bracket of
(lower) degree +1.

(fog)([sai] - |saprqg—1]) =
Z f ([8@1] - \sai_llsg([sai| . ’3@i+Q—1])|5ai+q| .. |Sap+q—1]) .

{f,g9} = fog — gof. Our formulas are the same as in the non graded
case [13]. We remark that if A is not assumed to be bounded, the for-
mulas are more complicated. Gerstenhaber has shown that HH*(A; A)
equipped with the cup product and the Lie bracket is a Gerstenhaber
algebra.

Let M be a closed d-dimensional smooth manifold. Poincaré duality
induces an isomorphism of H*(M;Fsy)-modules of (lower) degree d.

(19) O : H*(M;F.) "X 1. (M, Fy) = H*(M;F,).
More generally, let A be a graded algebra equipped with an isomor-

phism of A-bimodules of degree d, © : A = AVY. Then we have the
isomorphism

HH*(A,©): HH*(A, A) = HH*(A, AY).

Therefore on HH*(A, A), we have both a Gerstenhaber algebra struc-
ture and an operator A given by the dual of Connes boundary map B.
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Motivated by the Batalin-Vilkovisky algebra structure of Chas-Sullivan
on H,(LM), Thomas Tradler [26] proved that H H*(A, A) is a Batalin-
Vilkovisky algebra. See [22, Theorem 1.6] for an explicit proof. In
[20] or [27, Corollary 3.4] or [9, Section 1.4] or [19, Theorem B| or [21,
Section 11.6], this Batalin-Vilkovisky algebra structure on HH*(A, A)
extends to a structure of algebra on the Hochschild cochain complex
C*(A, A) over various operads or PROPs: the so-called cyclic Deligne
conjecture. Let us compute this Batalin-Vilkovisky algebra structure
when M is a sphere.

Proposition 20. ([30] and [31, Corollary 4.2]) Let d > 2. As Batalin-
Vilkovisky algebra, for the Hochschild cohomology of H*(S% Fy) = Ax_y,
we have

HH*(H*(S%Fy); H*(S%Fy)) 22 Ag g @ Fo[fa 1]

with A(g_q @ 5 ) = k(1@ f*1) and AQ @ f5 ) = 0,k > 0. In
particular, the underlying Gerstenhaber algebra is given by { f*, f'} = 0,
{gf* f'} =1/  and {gf*, g f'} = (k = Dg " for k, 1> 0.

Proof. Denote by A := H*(S%F,). The differential on C*(4; A) is
null. Let f € Hom(sA, A) C C*(4;A) such that f([sz]) = 1. Let
g € Hom(Fy, A) = Hom((sA)®°, A) C C*(A; A) such that ¢([]) = =.
The k-th power of f is the map f¥ € Hom((sA)®*, A) such that
fE([sx|---|sx]) = 1. The cup product g U f*¥ € Hom((sA)®*, A) sends
[sz|---|sx] to x. So we have proved that C*(A; A) is isomorphic to the
tensor product of graded algebras Ag_4 ® Fa[fy_1].

The unit 1 and x_,4 form a linear basis of H*(S¢). Denote by 1V and
zV the dual basis of AY = H*(S%)V. Poincaré duality induces the iso-
morphism © : H*(5%) 5 H*(S%)Y, 1 — 2" and 2 — 1V. The two fam-
ilies of elements of the form 1[sx|-- - |sz] and of the form z[sx|- - - |sz]
form a basis of C.(A4; A). Denote by 1[sz|---|sz]¥ and x[sx| - - - |sx]" the
dual basis in C,(A; A)Y. The isomorphism O induces an isomorphism

of complexes of degree d, © : C*(A; A) C*%@) C*(A; AY) S C (A A)V.
Explicitly [22, Section 4] this isomorphism sends f € Hom((sA)®P, A)
to the linear map O(f) € (A® (sA)®P)" C C.(A; A)Y defined by

O(f)(aolsar] - - [say)) = ((© o f)[sai] - -|sa,)) (ao).

Here with A = Az, O(f*) = z[sz| - - - |sz]¥ and O(gUf*) = 1[sz| - - |sa]".
Computing Connes boundary map BY on C,(A; A)Y (Example 12) and
using that by definition of A, OocA=DB"o (:), we obtain the desired
formula for A. O
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6. THE GERSTENHABER ALGEBRA HL,(LS?;TF,)

Using the same Hochschild homology technique as in section 4, we
compute up to an indeterminacy, the Batalin-Vilkovisky algebra H, (LS?; Fs).
Nevertheless, this will give the complete description of the underlying
Gerstenhaber algebra on H,(LS?;Fy).

Lemma 21. There exist a constant € € {0,1} such that as a Batalin-
Vilkovisky algebra, the homology of the free loop space on the sphere S*
18
H*(LSQ']FQ) = Aa_y @ Faoluy],
Ala_y@ul) = k(1@ ui™ +ea_y @ut™) and Al ®@ul) =0,k > 0.
Proof. In [8], Cohen, Jones and Yan proved that the Serre spectral

sequence for the free loop fibration QM L LM S Mis a spectral
sequence of algebras converging toward the algebra H,(LAM). Using
Hochschild homology, we see that there is an isomorphism of vector
spaces H,(LS? Fy) = H,(S%Fy) ® H,(QS?% Fy). Therefore the Serre
spectral sequence collapses. Since there is no extension problem, we
have the isomorphism of algebras

H, (LS*Fy) = H,(S%Fy) ® H,(QS?%Fy) = Ala_z) @ Fyluy].
Computing Connes boundary map on HH*(H*(5?;F,); H.(S% Fs)) (Ex-
ample 12), we see that A on H,(LS?;F5) is null in even degree and that

A Hpp—y — Hyy

is a linear map of rank 1, £ > 0. In particular A is injective in de-
gree —1.

Applying Lemma 11, to the identity map id : S? — S?, we see that
the composite

(J F2) Hz(ev F2)

H,(QS5%F,) H,(LS%Fy) 2 Hy(LS*%TF,) ) H,y (8% TFy)
is non zero. Since H, (ev) is a morphism of algebras, Hy(ev)(a_su?) = 0.
And so A(a_su1) = 1+ ca_su? with € € Fy.

We remark that when b = ¢, formula (6) takes the simple form
(22) A(ab®) = A(a)b® + aA(b?).

Using this formula, we obtain that
Ala_ou? ™) = A((a_oup ) (uF)?) = uF +ca_su*? k> 0.
Since A : Hy = Fya_su? & Fyu; — Hy is of rank 1 and A(a_su?) # 0,
A(uy) = M (a_pu?) with A = 0 or A = 1. Using again formula (22),
we have that
AR = Aug (uf)?) = MA(a_oud)u = AA(a_ou*T3), k > 0.
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So finally
Ala_ouf) = kub™ + cka_ouf™ and A(ul) = AA(a_yuf™),k > 0.

The cases A = 0 and A = 1 correspond to isomorphic Batalin-Vilkovisky
algebras: Let © : H,(LS?* F,) — H,(LS?* F,) be an automorphism
of algebras which is not the identity. Since ©(a_2) # 0, O(a_3) =
a_y. Since O(a_z) and O(u;) must generate the algebra Aa_s ® Fafu4],
O(uy) # a_ou3. Since O(uy) # uy, O(uy) = uy +a_su3. Therefore there
is an unique automorphism of algebras © : H,(LS?;Fy) — H,(LS?% Fy)
which is not the identity. Explicitly, © is given by O(u}) = uf +
ka_ouf? O(a_ou¥) = a_ou¥, k > 0. One can check that © is an
involutive isomorphism of Batalin-Vilkovisky algebras who transforms
the cases A = 0 into the cases A = 1 without changing . Therefore, by
replacing u; by u; + a_su?, we can assume that \ = 0. U

Consider the four Batalin-Vilkovisky algebras Aa_s ® Folu;] with
Alas@ub) = k(1@ ul™ +eay @ul™), A(1 @ uk) = M (a_ouit?),
k > 0, given by the different values of ¢, A\ € {0,1}. These four
Batalin-Vilkovisky algebras have only two underlying Gerstenhaber al-
gebras given by {u},ut} =0, {a_ouf ul} = W= +1(e — Na_qubtH!
and {a_quf,a_sul} = (k — Da_ou*™~1 for k, I > 0. Via the above
isomorphism O, these two Gerstenhaber algebras are isomorphic.

Corollary 23. The free loop space modulo 2 homology H,(LS?;Fy) is
isomorphic as Gerstenhaber algebra to the Hochschild cohomology of
H*(S?;Fy), HH*(H*(S?;Fy); H*(S? Fy)).

7. THE BATALIN-VILKOVISKY ALGEBRA H,(LS?)

In this section, we complete the calculations of the Batalin-Vilkovisky
algebras H., (LS?; Fy) and H,(LS?;Z) started respectively in sections 6
and 4, using a purely homotopic method.

Theorem 24. As a Batalin-Vilkovisky algebra, the homology of the
free loop space on the sphere S* with mod 2 coefficients is

H,(LS? Fy) = Aa_y @ Faluy],

Ala_y@ul) = k(1 @ul™ +a_y @ul™) and Al ®@ub) =0,k > 0.
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Theorem 25. With integer coefficients, as a Batalin-Vilkovisky alge-
bra,

Zla, v]
(a2, ab, 2av)

400 +oo too 7
= keao Zv§ @ g}o Zb_ 10" @ Za_o ® g? ﬁ(wk

with Yk > 0, A(vF) =0, A(av®) = 0 and A(bv*) = (2k + 1)v* + av* L.

H,(LS*Z) = Ab®

Denote by s : X — LX the trivial section of the evaluation map
ev: LX —» X.

Lemma 26. The image of A : H(LS?*;Fy) — Hy(LS*Fy) is not
contained in the image of Ho(s;Fy) : Hy(S% Fy) < Hy(LS?*;Fy).

Lemma 27. The image of A : H\(LS* Z) — Hy(LS? Z) is not con-
tained in the image of Ho(s;Z) : Hy(S?;Z) — Hy(LS*Z).

Proof of Lemma 27 assuming Lemma 26. Consider the commutative di-
agram

Hy(LS% 7)) @z Fy — Hy(LS*Fs)

A®zlF2 l lA

Hy (LS Z) ®; Fy — Hy(LS IFy)
Hz(SZZ)®ZF2T TH2(5%]F2)

H2<S2; Z) K7z ]FQ — HQ(SQ, FQ)

Since H,(LS?*;Z) = Hoy(LS?* Z) = Z, the horizontal arrows are iso-
morphisms by the universal coefficient theorem. The top rectangle
commutes according to Lemma 4.

Suppose that the image of A : Hy(LS?;Z) — Hy(LS?;Z) is included
in the image of Hy(s;Z). Then the image of A ®z Fy is included in
the image of Hy(s;Z) ®z Fy. Using the above diagram, the image of
A : H{(LS?* Fy) — Hy(LS?%*TFy) is included in the image of Hy(s;Fy).
This contradicts Lemma 26. 0

Proof of Theorem 24 assuming Lemma 26. It suffices to show that the
constant € in Lemma 21 is not zero. Suppose that ¢ = 0. Then by
Lemma 21, A(a_s @ uy) = 1.

It is well known that H.(s) : H.(M) — H.(LM) is a morphism
of algebras. In particular, let [S?] be the fundamental class of S?,
Hy(s)([S?]) is the unit of HL(LS?). So A(a_y ® uy) = Ha(s)([S?]).

O

This contradicts Lemma 26.
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The proof of Theorem 25 assuming Lemma 27 is the same. To com-
plete the computation of this Batalin-Vilkovisky algebra on the homol-
ogy of the free loop space of a manifold, we will relate it to another
structure of Batalin-Vilkovisky algebra that arises in algebraic topol-
ogy: the homology of the double loop space.

Let X be a pointed topological space. The circle S! acts on the
sphere S? by “rotating the earth”. Therefore the circle also acts on
02X = map ((S?, North pole), (X, *)). So we have a induced operator
A H(?X) — H,.1(922X). With Theorem 32 and the following
Proposition, we will able to prove Lemma 26.

Proposition 28. Let X be a pointed topological space. There is a
natural morphism r : LQX — map,.(S?, X) of S'-spaces between the
free loop space on the pointed loops of X and the double pointed loop
space of X such that:

o If we identify S? and S' A S, r is a retract up to homotopy of the
inclusion j : Q(QX) — L(QX),

e The composite r o s : QX < L(QX) — map.(S?, X) is homotopi-
cally trivial.

Proof. Let o : S? — Ssllxxi s = St AS! be the quotient map that identifies
the North pole and the South pole on the earth S?. The circle S! acts
without moving the based point on S1 A S' by multiplication on the
first factor. On the torus S! x S*, the circle can act by multiplication
on both factors. But when you pinch a circle to a point in the torus,
the circle can act only on one factor. If we make a picture, we easily see
that o : S% — S1 A S! is compatible with the actions of S*. Therefore
r:=map, (o, X) : LQX — map,.(S?, X) is a morphism of S'-spaces.

o Let m: SLASH - STAS = i‘l;/\ssll be the quotient map. The
inclusion map j : Q(QX) — L(2X) is map.(m, X). The composite
moo :S? — SYASYis the quotient map obtained by identifying a
meridian with a point in the sphere S2. The composite 7 o o can also
be viewed as the quotient map from the non reduced suspension of

St to the reduced suspension of S'. So the composite 7 oo : S? —

ST A St is a homotopy equivalence. Let © : ST A ST = S2 be any given
homeomorphism. The composite © o 7o o : S? — S? is of degree +1.
The reflection through the equatorial plane is a morphism of S!-spaces.
By replacing eventually o by its composite with the previous reflection,
we can suppose that © o7 oo : S? — S? is homotopic to the identity
map of S2,i. e. 00O is a section of 7 up to homotopy. Therefore
map,(c 00, X) = map,(0, X) or is a retract of j up to homotopy.
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o Let p: SLASH= Ssllxxil — S be the map induced by the pro-
jection on the second factor. Since my(S?) = *, the composite p o o is
homotopically trivial. Therefore ros, the composite of r = map, (o, X)

and s = map.(p, X) : QX — L(QX) is also homotopically trivial. O

Proof of Lemma 26. Denote by adgn : S® — QS™! the adjoint of the
identity map id : S™™' — Sl The map L(adg:) : LS* — LOS?
is obviously a morphism of S'-spaces. Therefore using Proposition 28,
the composite ro L(adsz) : LS* — LQS? — Q2S3 is also a morphism of
Sl-spaces. Therefore H,(roL(adg2)) commutes with the corresponding
operators A in H,(LS?) and H,(Q2S3).

Consider the commutative diagram up to homotopy

J s

(29) 052 LS? 52
Q(adsg)l L(adsg)l ladsz
0253 —> 1053 <—— 53

RN

9253
Using the left part of this diagram, we see that 7 (r o L(ad)) maps the
generator of m(LS?) = Z(j o adg1) to the composite Q(adg2) o adg: :
St — Q8% — 025° which is the generator of 71(Q25%) = Z. Therefore
m(r o L(ad)) is an isomorphism.
So we have the commutative diagram

m(LS?) @ Fy > Hy (LS Fy) —2—> Hy(LS?; Fy)

m (roL(adsg))@)ngN H, (roL(adsg);]Fg)l ng(roL(adsg);IFg)
T (Q25%) @ Fy "2 H,(025% Fy) —== Ha(Q25%F,)

By Theorem 32, A : H;(Q25%;Fy) — Hy(225%;F,) is non zero. There-

fore using the above diagram, the composite Hy(r o L(adg2)) o A is also

non zero. On the other hand, using the right part of diagram (29), we
have that the composite Hy(r o L(adgz2)) o Ha(s) is null. O

Corollary 30. The free loop space modulo 2 homology H,(LS?;Fy) is
not isomorphic as Batalin-Vilkovisky algebra to the Hochschild coho-
mology of H*(S*Fz), HH*(H*(S* Fa); H*(5% Fy)).

This means exactly that there exists no isomorphism between H, (LS?; F5)
and HH*(H*(S? Fy); H*(S? Fy)) which at the same time,

e is an isomorphism of algebras and
e commutes with the A operators,
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although separately
e there exists an isomorphism of algebras between H,(LS?;Fy)
and HH*(H*(S?* F,); H*(S%* Fy)) (Corollary 23) and
e there exists also an isomorphism commuting with the A oper-
ators between them.

Proof. By Proposition 20, HH*(H*(5?%); H*(S?)) is the Batalin-Vilkovisky
algebra given by € = 0 in Lemma 21. On the contrary, by Theorem 24,
M. (LS?* F,) is the Batalin-Vilkovisky algebra given by e = 1. At the
end of the proof of Lemma 21, we saw that the two casese = 0ande =1
correspond to two non isomorphic Batalin-Vilkovisky algebras. U

More generally, we believe that for any prime p, the free loop space
modulo p of the complex projective space H, (LCPP™*; [F,)? is not iso-
morphic as Batalin-Vilkovisky algebra to the Hochschild cohomology
HH*(H*(CPP~F,); H*(CP’~';F,)). Such phenomena for formal man-
ifolds should not appear over a field of characteric 0.

Recall that by Poincaré duality, we have the isomorphism

(19) ©: H*(S%) S H*(5%)".
Therefore we have the isomorphism
HH(H*(S2):0) « HH*(H*(S%); H*(S%) 5 HH"(H"(S%); H*(5%)").
Consider any isomorphism of graded algebras
(31) H..(LS?) = HH*(S*(5?); S*(5?)).

By Corollary 23, such isomorphism exists. Cohen and Jones ([7, The-
orem 3] and [5]) proved that such isomorphism exists for any manifold
M. Since S? is formal, we have the isomorphism of algebras

(2) HH(S"(S%);5°(5%) = HH"(H'(S%); H'(S%)).
By [17], we have the isomorphisms of H,(S')-modules

HALS?) = HH(5°(5%); 87(8)Y) & HIE(H*(5%); H'(5%)").

Corollary 30 implies that the following diagram does not commute over
IFQZ

2Bokstedt and Ottosen [1] have recently announced the computation of Batalin-
Vilkovisky algebra H, (LCP™;F,).
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HH*(S°(5%); §°(5%)") = HI*(H*(5%); H'(5%)")

(1/)"

H,(LS?) HE* (H*(5%);0)

&
HH(S%(5); S*(8%) — 2 HH*(H*(S%); H*(5?))
This is surprising because as explained by Cohen and Jones [7, p.
792], the composite of the isomorphism (14) given by Jones in [17] and

an isomorphism induced by Poincaré duality should give an isomor-
phism of algebras between H, (LS?) and HH*(S5*(5?); S*(5?)).

8. APPENDIX BY GERALD GAUDENS AND LLuc MENICHI.

Let X be a pointed topological space. Recall that the circle S!
acts on the double loop space Q2X. Consider the induced operator
A H(QPX) = H,1(922X). Getzler [14] has shown that H,(Q%X)
equipped with the Pontryagin product and this operator A forms a
Batalin-Vilkovisky algebra. In [12], Gerald Gaudens and the author
have determined this Batalin-Vilkovisky algebra H,(Q?S?;F,). The
key was the following Theorem. In [18, Proposition 7.46], answering to
a question of Gerald Gaudens, Sadok Kallel and Paolo Salvatore give
another proof of this Theorem.

Theorem 32. [12] The operator A : Hi (2253, Fy) — Ho(2S53;Fy) is
non trivial.

Both proofs [12] and [18, Proposition 7.46] are unpublished and pub-
licly unavailable yet. So the goal of this section is to give a proof of
this theorem which is as simple as possible.

Denote by x the Pontryagin product in H,(2?X) and by o the map
induced in homology by the composition map Q22X x Q25% — Q%2X.
Denote by 9252, the path-connected component of the degree n maps.
Denote by v; the generator of Hy(Q325%;F,) and by [1] the generator of
HD(Q%SQ7 FQ)

Lemma 33. For x € H,(Q*X;Fy), Az =z o (vy x [1]).

Proof. The circle S acts on the sphere S?. Therefore we have a mor-
phism of topological monoids © : (S',1) — (0252, idg2). The action

of S on QX is the composite S x Q22X @& 0259% x 2X > O2X.

Therefore for x € H,(Q22X;Fy), Ax = z o (H(0)[S1]).
Suppose that H;(©)[S'] = 0. Then for any topological space X,
the operator A on H,(Q?X;F,) is null. Therefore, for any z and y €
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H.(Q*X;Fy), {z,y} = A(xy)— (Az)y—z(Ay) = 0. That is the modulo
2 Browder brackets on any double loop space are null. This is obviously
false. For example, Cohen in [3] explains that the Gerstenhaber algebra
H,(2?¥2Y) has in general many non trivial Browder brackets. So the
assumption H;(©)[S'] = 0 is false.

Since the loop multiplication by idg: in the H-group 0252, is a ho-
motopy equivalence, the Pontryagin product by [1], #[1] : H,(Q25%) 5
H,(Q25?%) is an isomorphism. Therefore v;*[1] is a generator of H;(023.5?)
So H,(©)[S'] = vy * [1]. So finally

Az =z o (H(O)[S"]) = 20 (vy * [1]).

Recall that v; denotes the generator of H;(Q35%; F,).
Lemma 34. In the Batalin-Vilkovisky algebra H.(Q?5%Fy), Avy) =

V1 * V1.
Proof. Recall that [1] is the generator of Hy(925?). By Lemma 33,
All} =1} o (o1 % [1]) = (02 * [1]).
Denote by @Q : H,(Q225%) — Hs,11(93,5?) the Dyer-Lashof operation.
It is well known that Q[1] = vy % [2]. So by [4, Theorem 1.3 (4) p. 218|
{vr = [2], [} = {Q[1], [1]} = {[1], {[1], (1]} }-

By [4, Theorem 1.2 (3) p. 215, {[1], [1]} = 0. Therefore on one hand,
{v1 % [2],[1]} is null. And on the other hand, using the Poisson rela-

tion (7), since {[2], [1]} = {[1] « [1], 1]} = 2{[1], 1]} = 1] = 0,

{on 2], (1} = {on, (1} * 2] + o0 {[2], [1} = {on, [1} + [2].
Since *[1] : H,(025%) 5 H,(9252) is an isomorphism, we obtain that
Browder bracket {vy, [1]} is null. Therefore,

A(vy * [1]) = (Avy) * [1] + v1 x (A[1]) = ((Avy) — vy * v1) * [1].
But A(vy % [1]) = (Ao A)([1]) = 0. Therefore (Av) must be equal to
V1 * V1. ]

Proof of Theorem 32. We remark that since A preserves path-connected
components and since the loop multiplication of two homotopically
trivial loops is a homotopically trivial loop, H,(Q25?) is a sub Batalin-
Vilkovisky algebra of H,(Q25%).

Let S* < S % S2 he the Hopf fibration. After double loop-

. 22
ing, the Hopf fibration gives the fibration Q25! — Q253 — Q252
with contractile fiber Q*S* and path-connected base Q35%. Therefore



STRING TOPOLOGY FOR SPHERES. 21

Q%n . Q28% 5 Q2S? is a homotopy equivalence. And so H.(Q%n) :

H,(9%28%) = H,(Q25?) is an isomorphism of Batalin-Vilkovisky alge-
bras.

Let u; be the generator of H;(2%5?%). Lemma 34 implies that A(u;) =
uy * up. Since up * uy is non zero in H,(Q2S?;Fy), A(uy) is non triv-
ial. O
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