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Abstract. Let X be a topological space. The homology of the iterated loop

space H∗ΩnX is an algebra over the homology of the framed n-disks op-

erad H∗fDn [4, 9]. We explicitly determine this H∗fDn-algebra structure
on H∗(ΩnX;Q). We show that the action of H∗(SO(n)) on the iterated loop

space H∗ΩnX is related to the J-homomorphism and that the BV -operator

on H∗(Ω2X) vanishes on spherical classes only in characteristic other than 2.

1. Introduction

According to their importance in algebraic topology, iterated loop spaces have
been studied for a long time: the structure of an n-fold loop space is essentially
codified by an action the little n-disks operad Dn [7]. Hence via the homology
functor H∗ over an arbitrary field K, the homology of an n-fold loop space enjoys
the rich structure of algebra over the operad H∗Dn, as studied in [2]. The slightly
larger operad of framed n-disks fDn acts naturally on n-fold loop spaces, yielding an
action of the operad H∗fDn in homology with field coefficients, which for the case
n = 2 induces a Batalin-Vilkovisky algebra structure [4]. A systematic study of fDn
spaces was initiated in [9], where their homology was partially analyzed. We shall
in this work pursue somewhat this study. We completely characterize the H∗fDn
structure of iterated loop spaces in characteristic zero under some connectivity
assumptions. We notice for instance that the rational homology of the double loop
space on a 2-connected space is the Batalin-Vilkovisky algebra freely generated by
its rational homotopy Lie algebra (Theorem 4.4).

Our method relies on a connection between the fDn structure of iterated loop
spaces and the classical J-homomorphism, together with a certain compatibility
with the Hurewicz homomorphism. Although in characteristic 2 we cannot have
a simple description as in the rational case (as follows from our last section), our
methods can be used further to provide more computations as we will show in a
forthcoming work.

Let us now give the content of this paper with more details.
Except when specified, the homology functor H∗ is considered over an arbitrary

field K. Let n ≥ 2. Let X be a pointed topological space. Consider the iterated
loop space ΩnX. The action of the little n-disks operad Dn on ΩnX gives H∗Ω

nX
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the structure of H∗Dn-algebra. Fred Cohen [2] has shown that this equips H∗Ω
nX

with the structure of an en-algebra.

Definition 1.1. An en-algebra is a commutative graded algebra A equipped with
a linear map {−,−} : A⊗A→ A of degree n− 1, such that:
a) the bracket {−,−} gives A the structure of graded Lie algebra of degree n− 1.
This means that for each a, b and c ∈ A,
{a, b} = −(−1)(|a|+n−1)(|b|+n−1){b, a} and
{a, {b, c}} = {{a, b}, c}+ (−1)(|a|+n−1)(|b|+n−1){b, {a, c}}.

b) the product and the Lie bracket satisfy the Poisson relation:

{a, bc} = {a, b}c+ (−1)(|a|+n−1)|b|b{a, c}.

Suppose that X is a based space with base point ∗ ∈ X equipped with a pointed
action of SO(n): pointed action means that for any element g in SO(n), we have
g.∗ = ∗. Getzler [4], Salvatore and Wahl [9] have noticed that the little n-disks
operad Dn is an SO(n)-operad which acts in the category of SO(n)-spaces on
ΩnX, or equivalently that the framed n-disks operad fDn acts on ΩnX. Therefore
H∗Ω

nX is an algebra over the operad H∗Dn in the category of H∗SO(n)-module,
or equivalently is an algebra over the operad H∗fDn. The first goal of this paper
is to provide some explicit computations of this structure on H∗Ω

nX for various X
and various coefficients K.

It is obvious that the structure ofH∗fDn-algebra is the structure of an en-algebra
together with the structure of H∗SO(n)-module which satisfy some compatibility
relations. Over any coefficients K, when n = 2, Getzler [4] has shown that an
H∗(fD2;K)-algebra is a BV2-algebra (i.e. Batalin-Vilkovisky algebra).

Definition 1.2. [9, Def 5.2] A BVn-algebra A is an en-algebra with a linear
endomorphism BV : A → A of degree n− 1 such that BV ◦ BV = 0 and for each
a, b ∈ A,

(1.3) {a, b} = (−1)|a|
(
BV (ab)− (BV a)b− (−1)|a|a(BV b)

)
.

The bracket measures the deviation of the operator BV from being a derivation
with respect to the product. Furthermore, in a BVn-algebra, BV satisfies the
formula [4, Proposition 1.2] or [9, (7) in section 5]

(1.4) BV [a, b] = [BV a, b] + (−1)|a+1|[a,BV b].

Recall that H∗(SO(2k − 1);Q) is an exterior algebra on generators a4i−1 for
1 ≤ i ≤ k − 1 while H∗(SO(2k);Q) is isomorphic to H∗(SO(2k − 1);Q) with an
adjoined exterior generator a2k−1 [5, p. 300].

When K = Q and for any n ≥ 2, Salvatore and Wahl have computed exactly
what H∗(fDn;Q)-algebras are

Theorem 1.5. [9, Th. 5.4] An H∗(fD2k−1;Q)-algebra A is an e2k−1-algebra such
that all the generators of the algebra H∗(SO(2k−1);Q) act on A as derivation with
respect to the product. An H∗(fD2k;Q)-algebra A is a BV2k-algebra such that the
generators a3,. . . ,a4k−5 of the algebra H∗(SO(2k);Q) act on A as derivation with
respect to the product and where the last generator a2k−1 defines the BV -operator.

Our first remark (Proposition 2.1) is that for many pointed SO(n)-spaces X,
this H∗(fDn;Q)-algebra structure on H∗(Ω

nX;Q) reduces to:

• an en-algebra structure if n is odd,
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• a BVn-algebra structure if n is even.

That is, all the generators of H∗(SO(n);Q), except when n is even the generator
in degree n− 1, act trivially in cases of interest. Proposition 2.1 holds in particular
for any pointed topological space X considered as a trivial pointed SO(n)-space.
In the rest of this paper, this is the only case that we will be dealing with. We
explain why in section 3.

In Section 4, we compute the BVn-algebra structure on H∗(Ω
nX;Q) when X is

n-connected: we show that the BVn-algebra H∗(Ω
nX;Q) is the BVn-algebra freely

generated by the Lie algebra π∗(ΩX)⊗Q (Theorem 4.4).
In Section 5, we explain (Theorem 5.10) how the action of H∗SO(n) on H∗Ω

nX
is related to the J-homomorphism, a useful fact used later in our computations. In
Section 4 (Theorem 4.4) over Q and then more generally in Section 5 (Corollary 5.11
ii)) over any field K of characteristic different from 2, we see that the BV operator
vanishes on spherical classes.

In Section 6 , we show (Theorem 6.2) that the BV operator

BV : H1(Ω2S3,F2)
∼=→ H2(Ω2S3,F2)

is an isomorphism. Therefore over F2, the BV operator is in general non-trivial on
spherical classes.

Finally we notice that:
-Theorem 6.2 is a crucial step in the main result of [8] and
-Kallel and Salvatore [6, Proposition 7.46] have given us an independent proof

of this theorem.

Acknowledgements.- The second author would like to thank Ralph Cohen for a
discussion simplifying the proof of Theorem 5.10.

2. H∗(fDn;Q)-algebra structures on H∗(Ω
nX;Q)

Denote by ΩnkS
n the path-connected component of ΩnSn given by pointed maps

of degree k. For n = ∞, we denote the colimit of the spaces ΩnSn under the
suspension maps by QS0, which is the infinite loop space associated to the stable
homotopy groups of spheres, that is π∗QS

0 is the ring πS∗ of stable homotopy. The
degree i component of QS0 is denoted by QiS

0. In all cases, [k] is the element in
π0(ΩnSn) ∼= Z represented by ΩnkS

n. The special orthogonal group SO(n) acts on
the sphere Sn−1 in a non-pointed way. By considering the sphere Sn as the non-
reduced suspension of Sn−1, we obtain a pointed SO(n)-action on Sn. For example,
by rotating, the ‘earth’ S2 has an action of the circle S1 preserving the North pole.
By adjunction, we have a morphism of monoids Θ : (SO(n), 1) → (Ωn1S

n, idSn).
Recall that Ωn1S

n is the monoid of self-homotopy equivalences homotopic to the
identity.

Proposition 2.1. Let X be a pointed SO(n)-space. Suppose that the action of
SO(n) on X is obtained by restriction along the morphism Θ : SO(n) → Ωn1S

n

from some action of Ωn1S
n on X. Then the action of Hi(SO(n);Q) on H∗(Ω

nX;Q)
coming from the diagonal action of SO(n) on ΩnX is trivial except possibly if n is
even and i = n− 1.

The case where n is even and i = n − 1 is analyzed in Section 4. Here are
the most important examples of pointed SO(n)-spaces. Note that we can apply
Proposition 2.1 to them.
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Example 2.2. Let Y be a pointed space. We consider the nth reduced suspension
of Y , which is by definition X = Sn ∧ Y . The space X has a pointed SO(n)-action
defined by g.(t ∧ y) := (g.t) ∧ y for any g ∈ SO(n), t ∈ Sn and y ∈ Y .

Example 2.3. Any pointed topological spaceX can be considered as a trivial pointed
SO(n)-space.

We give immediately the proof of Proposition 2.1 since it will give us the op-
portunity to review in general the diagonal action of SO(n) on ΩnX, for a pointed
SO(n)-space X.

Proof. Recall that an H-group is an associative H-space with an homotopy inverse.
An H-map between two H-groups is called a morphism of H-groups. Let G be an
H-group acting pointedly on two spaces Y and Z. The diagonal action on the space
of pointed maps, map∗(Y, Z), is the action defined by

(g.f)(y) := g.f(g−1.y)

for any g ∈ G, y ∈ Y and any pointed map f : (Y, ∗)→ (Z, ∗). The diagonal action
is natural up to homotopy with respect to morphisms of H-groups, since morphisms
of H-groups commute necessarily up to homotopy with the homotopy inverses. Let
G := SO(n), Y := Sn and let Z be any pointed SO(n)-space X, we obtain the
action considered by Getzler, Salvatore and Wahl [9, Example 2.5].

The monoid (Ωn1S
n, id) is path-connected. So it is a H-group [12, X.2.2] and

Θ : (SO(n), 1)→ (Ωn1S
n, id) is a morphism of H-groups.

Now suppose that the pointed action of SO(n) on X is obtained by restriction
of an action of Ωn1S

n. Then by naturality with respect to Θ, the diagonal action of
SO(n) on ΩnX is homotopic to the composite

SO(n)× ΩnX
Θ×ΩnX−→ Ωn1S

n × ΩnX
action×ΩnX−→ ΩnX.

where action is the diagonal action of Ωn1S
n on ΩnX.

As we will see in more details below (beginning of Section 5), there is a pointed
homotopy equivalence between (Ωn0S

n, ∗) and (Ωn1S
n, id). But

∀i ≥ 1, πi(Ω
n
0S

n, ∗)⊗ Q ∼= πi+n(Sn, ∗)⊗ Q =

{
Q if n is even and i = n− 1,

0 otherwise.

Therefore for n even, Ωn1S
n is rationally homotopy equivalent to Sn−1. And for n

odd, Ωn1S
n is rationally contractible. �

3. Decomposition of the action of SO(n) on ΩnX for a general
SO(n)-space

The diagonal action of SO(n) on ΩnX is the combination of two different actions
of ΩnX:

(1) The action denoted by S, ‘on the source’, given by (g.f)(y) := f(g−1.y) for
any g ∈ SO(n), y ∈ Sn and any pointed map f : (Sn, ∗)→ (Z, ∗).

(2) The action denoted by T , ‘on the target’, given by (g.f)(y) := g.f(y) for
any g ∈ SO(n), y ∈ Sn and any pointed map f : (Sn, ∗)→ (Z, ∗).

For n = 2, the result in this section is
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Theorem 3.1. Let X be a pointed S1-space. Denote by BVdiag, BVS and BVT
the BV -operators respectively due to the diagonal action, the action ‘on the source’
and the action ‘on the target’ of S1 on Ω2X. Then BVdiag = BVS +BVT and BVT
is a derivation with respect to the Pontryagin product.

The diagonal action is in homology the composite (where the roles of S and T
could be permuted)

H∗SO(n)⊗H∗ΩnX

∆H∗SO(n)⊗H∗ΩnX

��
H∗SO(n)⊗H∗SO(n)⊗H∗ΩnX

H∗SO(n)⊗H∗S
��

H∗SO(n)⊗H∗ΩnX

H∗T

��
H∗Ω

nX.

For example when n = 2, let [S1] be the fundamental class of H∗SO(2). Since [S1]
is a primitive element, the BV -operator BVdiag on H∗Ω

2X, which is due to the
diagonal action in homology of [S1], is the sum of the two operators BVS and BVT
on H∗Ω

2X given by the action S on the source and the action T on the target of
[S1].

Let ◦ : map∗(X,Y ) × ΩnX → ΩnY , (g, f) 7→ g ◦ f be the composition map.
We have the following obvious distributive law between composition ◦ and loop
multiplication due the structure of co-H-group on Sn. For any f ∈ map∗(X,Y ),
g, h ∈ ΩnX,

f ◦ (gh) = (f ◦ g)(f ◦ h).(3.2)

In the particular case Y = X, this means that the multiplication of loops

ΩnX × ΩnX → ΩnX

is map∗(X,X)-equivariant. Since X is a pointed SO(n)-space, we have a morphism
of monoid SO(n)→ map∗(X,X). Therefore the multiplication of loops

ΩnX × ΩnX → ΩnX

is SO(n)-equivariant with respect to the action ‘on the target’. So in homology,
the Pontryagin product

H∗Ω
nX ×H∗ΩnX → H∗Ω

nX

is a morphism of H∗SO(n)-modules for the action ‘on the target’.
For example, when n = 2, the action of [S1] in homology ‘on the target’ gives an

operator BVT which is a derivation with respect to the Pontryagin product and so
does not contribute at all to the bracket (See formula (1.3)). Therefore we do not
find the action ‘on the target’ of SO(n) on ΩnX interesting. In the rest of the paper,
we will study only the action on the source of SO(n) on ΩnX or equivalently we
will considered the diagonal action of SO(n) on ΩnX where X is a trivial pointed
SO(n)-space (Example 2.3).
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4. Computation of the H∗(fDn;Q)-algebra H∗(Ω
nX;Q)

Freely generated en-algebras. Let n ∈ Z. The suspension of a graded vector
space V is the graded vector space sV such that (sV )i+1 = Vi. Let L be a graded Lie
algebra. The (n−1) desuspension of L, s1−nL, has a Lie bracket of degree n−1. The
free graded commutative algebra Λ(s1−nL) is equipped with a unique structure of
en-algebra such that the inclusion s1−nL ↪→ Λ(s1−nL) commutes with the brackets.
This inclusion is universal. When n = 1, this bracket is the well-known Schouten
bracket of the Poisson algebra ΛL. Let A be an en-algebra. Then any Lie algebra
morphism s1−nL→ A extends to a unique morphism of en-algebras Λ(s1−nL)→ A.
We will call this en-algebra Λ(s1−nL), the en-algebra freely generated by the graded
Lie algebra L. Let L := π∗(ΩX) ⊗ Q be equipped with the Samelson bracket
and A := H∗(Ω

nX;Q). Then s1−nL = π∗Ω
nX ⊗ Q and using Milnor-Moore and

Cartan-Serre theorems [3, Theorems 16.10 and 21.5] we have

Theorem 4.1. [2, Remark 1.2 p. 214][1] Let n ≥ 2. Let X be an n-connected
topological space. The Hurewicz morphism induces an isomorphism

Λ(π∗Ω
nX ⊗Q)

∼=→ H∗(Ω
nX;Q)

of both en-algebras and Hopf algebras between the en-algebra freely generated by the
Lie algebra π∗(ΩX)⊗Q and the rational homology of the iterated loop space.

Remark 4.2. We notice that the tensor product of two en-algebras is naturally an
en-algebra, where the bracket on tensors is given by:

{a⊗ b, a′ ⊗ b′} = (−1)|b|(|a
′|+n−1){a, a′} ⊗ bb′ + (−1)|a

′|(|b|+n−1)aa′ ⊗ {b, b′} .

An en-algebra L which is also a Hopf algebra is called a graded Hopf en-algebra if its
diagonal map preserves Lie brackets (this structure is called Poisson Hopf algebra if
n = 1). Freely generated en-algebras are actually graded Hopf en-algebras and have
the universal property in the relevant category. On the other hand, H∗(Ω

nX;Q)
is a Hopf en-algebra and the isomorphism in Theorem 4.1 above is in fact an
isomorphism of graded Hopf en- algebras.

Freely generated BVn-algebras. Suppose now that n ∈ Z is even and that the
graded Lie algebra L is equipped with a differential dL. Let d0 be the derivation of
degree n− 1 on Λ(s1−nL) given by

d0(s1−nx1 ∧ · · · ∧ s1−nxk) = −
k∑
i=1

(−1)nis1−nx1 ∧ · · · ∧ s1−ndLxi ∧ · · · ∧ s1−nxk

where ni =
∑
j<i |s1−nxj |. Since d2

L = 0, d2
0 = 0. Let d1 be the endomorphism of

degree n− 1 on Λ(s1−nL) given by

d1(s1−nx1 ∧ · · · ∧ s1−nxk) =∑
1≤i<j≤k

(−1)|xi−n+1|(−1)nij s1−n{xi, xj} ∧ s1−nx1 · · · ŝ1−nxi · · · ŝ1−nxj · · · ∧ s1−nxk .

The symbol ˆ means ‘deleted’. Here the sign (−1)nij is such that s1−nx1 ∧ · · · ∧
s1−nxk = (−1)nijs1−nxi∧s1−nxj∧s1−nx1∧. . . ŝ1−nxi . . . ŝ1−nxj · · ·∧s1−nxk. Since
dL is a derivation with respect to the bracket, we have d0d1 +d1d0 = 0. The Jacobi
identity implies that d2

1 = 0.
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Consider the endomorphism BV of degree n− 1 on Λ(s1−nL) defined by BV :=
d0 + d1. We have BV ◦BV = 0. A direct calculation shows that

(−1)|a|
(
BV (ab)− (BV a)b− (−1)|a|a(BV b)

)
is the bracket on the en-algebra Λ(s1−nL). Therefore the en-algebra Λ(s1−nL)
equipped with this linear operator BV is a BVn-algebra, that we will denote
Λs1−n(L, dL) and that we will call the BVn-algebra freely generated by the dif-
ferential graded Lie algebra (L, dL). The inclusion s1−n(L, dL) ↪→ Λs1−n(L, dL)
commutes with the brackets and the differentials −dL and BV . Again, this in-
clusion is universal. Let A be a BVn-algebra. Then any differential graded Lie
algebra morphism s1−n(L, dL)→ A extends to a unique morphism of BVn-algebras
Λs1−n(L, dL) → A. To sum up, the construction of the freely generated BVn-
algebra is the left adjoint functor to the forgetful functor from BVn-algebras to
differential graded Lie algebras.

Suppose moreover that K := Q. Then the differential d1 is the unique coderiva-
tion on Λ(s1−nL) decreasing wordlength by 1 such that

(4.3) d1(s1−nx ∧ s1−ny) = (−1)|x|−n+1s1−n{x, y}.
When n = 0, our operator BV on Λ(s1−nL) coincides with the differential of the

Cartan-Chevalley-Eilenberg complex [3, p. 301] whose homology is TorU(L,dL)
∗ (Q,Q).

The case n = 2 is considered in [11, Section 1.1 p. 10]. We prove

Theorem 4.4. Suppose that n ≥ 2 and n is even. Let X be an n-connected
topological space. The BVn-algebra H∗(Ω

nX;Q) is isomorphic to Λs1−n(π∗ΩX ⊗
Q, 0), the BVn-algebra freely generated by the graded Lie algebra π∗ΩX⊗Q equipped
with the zero differential.

Remark 4.5. The tensor product of two BVn-algebras is naturally a BVn-algebra.
The BV operator on tensors is given by

BV (a⊗ b) = BV (a)⊗ b+ (−1)|a|a⊗BV (b) .

A BVn-algebra which is also a Hopf algebra is called a Hopf BVn-algebra if its diag-
onal is a map of BVn-algebras. One can check that freely generated BVn-algebras
are actually Hopf BVn-algebras, and are also universal for this structure. On the
other hand, in H∗(Ω

nX;Q) is actually a Hopf BVn- algebra, and the isomorphism
of Theorem 4.4 is in fact an isomorphism of Hopf BVn algebras. This is similar to
Remark 4.2.

Proof. By Theorem 4.1, the underlying en-algebras are isomorphic. By the univer-
sal property of the freely generated BVn-algebra Λs1−n(L, 0), its suffices to show
that the BV-operator on H∗(Ω

nX;Q) vanishes on spherical classes.
The BV -operator on H∗(Ω

nX;Q) is induced by the action of a primitive el-
ement of degree n − 1 in H∗(SO(n);Q). More generally, let Y be an SO(n)-
space. The operator induced by the action of a primitive element in H∗SO(n)
is a coderivation (coaugmented if the action is pointed). The image of a prim-
itive element by a coaugmented coderivation is a primitive element. Therefore,
the operator BV induces an operator of degree n− 1 on the primitive elements of
H∗(Ω

nX;Q), denoted by PH∗(Ω
nX;Q). Let i ≥ 1. By Cartan-Serre’s theorem,

PHi(Ω
nX;Q) ∼= πiΩ

nX⊗Q ∼= πi+nX⊗Q. Denote by XQ the rationalization of X.

By the universal property of localization, πi+nX ⊗ Q ∼= πi+nXQ ∼= [Si+nQ , XQ]. So
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the operator BV can be identified with a morphism between the pointed homotopy
classes

[Si+nQ , XQ]→ [Si+2n−1
Q , XQ].

Now since X was equipped with the structure of trivial SO(n)-pointed space,
the BV operator is natural with respect to based continuous maps. This BV
operator can be therefore identified with a ‘rational homotopy operation’: a natural
transformation [Si+nQ , XQ]→ [Si+2n−1

Q , XQ]. By [12, XI.1.2], this rational homotopy

operation is the composition by an element of πi+2n−1S
i+n ⊗ Q. Since for i ≥ 1,

πi+2n−1S
i+n ⊗Q is trivial, the BV operator is zero on πiΩ

nX ⊗Q for i ≥ 1. �

Remark that in fact, in this proof, we have shown that the BV-operator on
H∗(Ω

nX;Q) is the unique coderivation decreasing wordlength by 1 satisfying (4.3).
Therefore we have recovered without computations that Λ(s−(n−1)L) is a BVn-
algebra in the case L := π∗ΩX ⊗Q. This was our starting observation.

Remark 4.6. Suppose more generally that X is an SO(n)-pointed space not nec-
essarily trivial. The generator in degree n− 1 which defines the structure of BVn-
algebra (Theorem 1.5) on H∗(Ω

nX;Q) is also primitive. Therefore Theorem 3.1
holds also for the operator BV = BVdiag of degree n − 1 on H∗(Ω

nX;Q). In
particular, BV = BVS + BVT . Moreover, this operator BV induces a differential
dL on π∗ΩX ⊗ Q. By (1.4) and [2, Remark 1.2 p. 214], dL is a derivation with
respect to the Samelson bracket. And this time, the BVn-algebra H∗(Ω

nX;Q) is
isomorphic to Λs1−n(π∗ΩX ⊗Q, dL) the freely generated BVn-algebra with the (in
general non-zero) differential dL. By Theorem 4.4, the differential d1 corresponds
to BVS while d0 corresponds to BVT .

Finally, remark that if X = M is a manifold and n = 2, Salvatore and Wahl [9,
Theorem 6.5] have also given a formula for the BV2-algebra H∗(Ω

2M ;Q).

In the following section, we show that over any field K, the action of a spherical
class in H∗SO(n) on a spherical class in H∗Ω

nX still corresponds to a homotopy
operation. But this homotopy operation is generally not trivial and is related to
the well-known J-homomorphism.

5. Action of SO(n) on iterated loop spaces and J-homomorphism

Let n ≥ 2. The case of infinite loop spaces is implicitly included as the case
n =∞. In this case, SO(n) is meant to be the infinite orthogonal group SO. The
iterated loop space (ΩnSn, ∗) is an H-group. So the multiplication by id gives a
free homotopy equivalence

multiplication by id : Ωn0S
n '−→ Ωn1S

n.

Since both (Ωn0S
n, ∗) and (Ωn1S

n, id) are connected H-spaces, pointed homotopy
classes coincide with free homotopy classes [12, III.1.11 and III.4.18]. So a based
map (Ωn0S

n, ∗)→ (Ωn1S
n, id) freely homotopic to the multiplication by id, will give

a pointed homotopy equivalence from (Ωn0S
n, ∗) to (Ωn1S

n, id). The pointed homo-
topy inverse of this map is a map homotopic to the multiplication by a degree −1
map from Sn to Sn. Let inv : SO(n)→ SO(n) be the map sending an orthogonal
matrix to its inverse. Recall that we have a morphism of topological monoids

Θ : (SO(n), 1)→ (Ωn1S
n, id) .
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Denote by adn : πi+n(X)
∼=→ πi(Ω

nX) the adjunction map. The classical J-
homomorphism that we will denote J, is the composite (Compare with Madsen-
Milgram p. 47, Igusa p. 247, Kono-Tamaki p. 113. or better John Klein’s answer
to the question “Fibrewise homotopy-equivalence of unit sphere bundles vs isomor-
phism of tangent bundles” in mathoverflow)

πi(SO(n), 1)
πi(J)→ πi(Ω

nSn, ∗) ad
−1
n→ πi+n(Sn, ∗)

where J is the composite

(5.1) J : (SO(n), 1)
Θ→ (Ωn1S

n, id)
'← (Ωn0S

n, ∗) .
Let J ′ be the map

J ′ : (SO(n), 1)
inv→ (SO(n), 1)

Θ→ (Ωn1S
n, id)

'← (Ωn0S
n, ∗)

That is J ′ is the precomposition of J with the inverse map of SO(n). In homotopy,
inv gives the inverse map. In homology, inv gives the antipode χ of the Hopf
algebra H∗SO(n). Therefore, we have

Lemma 5.2. In homotopy, π∗J
′ = −π∗J while in homology J ′∗ = J∗χ where χ is

the antipode of the Hopf algebra H∗SO(n). In particular, on a primitive element
a ∈ H∗SO(n), J ′∗(a) = −J∗(a).

Let ◦ : (ΩnX, ∗)× (ΩnSn, ∗)→ (ΩnX, ∗), (g, f) 7→ g ◦f be the composition map.
Using the distributive law (3.2), we have for any g ∈ ΩnX, f ∈ ΩnSn:

(5.3) g ◦ (f.idSn) = (g ◦ f)(g ◦ idSn) = (g ◦ f)g.

The left action of SO(n) on ΩnX is given by the diagram commutative up to free
homotopy

SO(n)× ΩnX
J′×ΩnX //

(Θ◦inv)×ΩnX

��

Ωn0S
n × ΩnX

mult by id

uukkkkkkkkkkkkkkk
ΩnSn×∆ΩnX

��
Ωn1S

n × ΩnX

τ

��

Ωn0S
n × ΩnX × ΩnX

τ×ΩnX

��
ΩnX × Ωn1S

n

◦
��

ΩnX × Ωn0S
n × ΩnX

◦×ΩnX

��
ΩnX ΩnX × ΩnX

mult
oo

Here τ : ΩnSn × ΩnX → ΩnX × ΩnSn is the map that interchanges factors. The
top left triangle commute up to free homotopy, by definition of J ′. The bottom
diagram commutes exactly by formula (5.3). Denote by ◦ : H∗Ω

nX ⊗H∗ΩnSn →
H∗Ω

nX , (f ⊗ g) 7→ f ◦ g, the morphism induced in homology by composition and
by J∗ : H∗SO(n)→ H∗Ω

nSn, the morphism induced by J .

Proposition 5.4. In homology, the action of H∗SO(n) on H∗Ω
nX, denoted by ·,

is given for f ∈ H∗SO(n) and g ∈ H∗ΩnX by

f · g =
∑
i

(−1)|g
′
i||f | (g′i ◦ (J ′∗f)) g′′i

where ∆g =
∑
i g
′
i ⊗ g′′i .
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Note that alternatively to give a shorter proof of this proposition, we could have
applied [2, Theorem 3.2 i) p. 363]. But we have preferred to give a independent
simple proof.

The unit 1 of the algebra H∗Ω
nX is given by applying homology to the inclusion

of the constant map ∗ ↪→ ΩnX. Therefore by applying homology to the commuting
diagram

∗ × ΩnSn //

��

∗

��
ΩnX × ΩnSn ◦

// ΩnX

we obtain [2, Proposition 3.7(i) p. 364] that for any f ∈ H∗ΩnSn,

1 ◦ f = ε(f)1.

Here ε is the augmentation of the Hopf algebra H∗Ω
nSn. So, in homology, the

action of f ∈ H>0SO(n) on a primitive element g ∈ H∗ΩnX is given by

f · g = (−1)|f ||g|g ◦ (J ′∗f) = (−1)|f ||g|+1g ◦ (J∗f) .(5.5)

Which means that the action of H>0SO(n) on primitive elements of H∗Ω
nX is

given in homology by the composite

(SO(n), 1)× (ΩnX, ∗) J
′×ΩnX→ (ΩnSn, ∗)× (ΩnX, ∗) τ→ (ΩnX, ∗)× (ΩnSn, ∗) ◦→ (ΩnX, ∗).

Let ◦̄ : πi(Ω
nX, ∗)×πj(ΩnSn, ∗)→ πi+j(Ω

nX, ∗) be the map induced on homotopy
groups by the composition ◦. Explicitly, the composition map

◦ : (ΩnX, ∗)× (ΩnSn, ∗)→ (ΩnX, ∗)
passing to the quotient, defines a map

(ΩnX, ∗) ∧ (ΩnSn, ∗)→ (ΩnX, ∗).
The map ◦̄ sends (f, g) to the composite

f ◦̄g : Si ∧ Sj f∧g→ (ΩnX, ∗) ∧ (ΩnSn, ∗)→ (ΩnX, ∗).
Let X be an infinite loop space, the ◦̄ product extends to a product

◦̄ : (X, ∗)× (QS0, ∗)→ (X, ∗) .

As before, the ◦ product induces a map

◦̄ : πiX × πjQS0 −→ πi+jX .

Denote by hur the Hurewicz morphism. Since the diagram

Si × Sj
f×g//

��

ΩnX × ΩnSn

◦
��

Si ∧ Sj
f ◦̄g

// ΩnX

is commutative, by applying homology we obtain that the Hurewicz morphism
commutes with the composition:

(5.6) hur(f) ◦ hur(g) = hur(f ◦̄g).

This proof is similar to the proof that hur commutes with the Samelson bracket [12,
X.6.3]. From formulas (5.5) and (5.6), we deduce
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Proposition 5.7. Let f ∈ πiSO(n), g ∈ πjΩ
nX, i, j ≥ 1. Then the action of

hur(f) ∈ HiSO(n) on hur(g) ∈ HjΩ
nX is given by

hur(f) · hur(g) = −(−1)ijhur(g◦̄π∗J(f)) = −(−1)ijhur(g◦̄adn(Jf)).

Recall that adn : πi+nX
∼=→ πiΩ

nX denotes the adjunction map. The following
lemma follows from elementary manipulation with the loop-suspension adjunction.

Lemma 5.8. We have the following commutative diagram:

πi+nX × πj+nSn //

adn×adn ∼=
��

πi+j+nX

adn∼=
��

πiΩ
nX × πjΩnSn ◦̄

// πi+jΩnX

where the top arrow is the map sending (f, g) to f ◦ Σig, the composite of f and
the ith suspension of g.

In the stable case, we simply obtain

Lemma 5.9. Let X be an infinite loop space, and let X̂ be the corresponding

spectrum. The ◦̄ product coincides under the isomorphism π∗X ∼= πS∗ X̂ with the

natural action of the stable homotopy ring πS∗ on the stable homotopy module πS∗ X̂.

Recall that J : πiSO(n)→ πi+n(Sn) denote the classical J-homomorphism.

Theorem 5.10. Let f ∈ πiSO(n), g ∈ πj+nX, i, j ≥ 1. Then the action of
hur(f) ∈ HiSO(n) on (hur ◦ adn)(g) ∈ HjΩ

nX is given by

hur(f) · (hur ◦ adn)(g) = −(−1)ij(hur ◦ adn)(g ◦ ΣjJf).

Proof. By applying Proposition 5.7 to f and adng, and then Lemma 5.8 (or 5.9 if
n =∞)

hur(f) · hur(adng) = −(−1)ijhur((adng)◦̄adn(Jf)) = −(−1)ijhur ◦ adn(g ◦ ΣjJf) .

�

Corollary 5.11. Let X be a topological space. Let g ∈ πj+2(X), j ≥ 1.
i) Consider the BV operator Hj(Ω

2X)→ Hj+1(Ω2X). Then

BV ((hur ◦ ad2)(g)) = −(−1)j(hur ◦ ad2)(g ◦ Σjη).

ii) In particular, over a field K of characteristic different from 2. the BV operator
HjΩ

2X → Hj+1Ω2X is zero on spherical classes.

Proof. Take n = 2 and let f := idS1 in Theorem 5.10. The Hopf map η : S3 � S2

is equal to J(idS1). Its jth suspension, Σjη is the generator of π3+jS
2+j ∼= Z/2Z.

Therefore localized away from 2, Σjη is null homotopic. �

Recall that an element in the homology of a space is called spherical if it sits in
the image of the Hurewicz homomorphism.
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6. Batalin-Vilkovisky structure of H∗(Ω
2S3;F2)

In this section, we see that part ii) of Corollary 5.11 is not true in characteristic
2. In this last section, homology will mean homology with coefficients in F2 and for
any pointed space X, hur : π∗X −→ H∗(X,F2) will denote the modulo 2 Hurewicz
homomorphism. Recall the following classical splitting lemma:

Lemma 6.1. Let F
j
↪→ E

p
� B be a homotopy fibration sequence (in the sense

of [10, p. 53]) with F , E and B path-connected. Suppose that there is a map
s : B → E such that the composite p ◦ s is a homotopy equivalence and that E is

an H-space with multiplication µ. Then the composite µ ◦ (j × s) : F × B '→ E is
a homotopy equivalence. In particular [10, Corollary 7.1.5] j admits a retract up to
homotopy.

The homology of Ω2S3, as a Pontryagin algebra, is polynomial on generators un
of degree 2n − 1, n ≥ 1, (see Cohen’s work in [2]). We first notice that u1 is the
bottom non-trivial class in positive degrees, and as such, must be in the image of
the Hurewicz homomorphism, according to the Hurewicz theorem. But π1Ω2S3 is
infinite cyclic generated by ι = ad2(IdS3) the adjoint of the identity of S3.

Since u1 = hur ι = hur ◦ ad2(idS3), thanks to part i) of Corollary 5.11,

BV (u1) = hur(ad2(Ση))

where ad2(Ση) ∈ π2(Ω2S3) is the adjoint of suspension of the Hopf map Ση ∈ π4S
3.

We want to show that the Hurewicz homomorphism for Ω2S3 is non-trivial in
degree 2. This can be seen as follows. We know that π1Ω2S3 ∼= Z and π2Ω2S3 ∼=
Z/2Z generated by ad2(Ση).

Let p : S3 → K(Z, 3) represent the generator for the third integral cohomology
group of S3, π3K(Z, 3) ∼= H3(S3;Z). Let S3〈3〉 be the homotopy fiber of p and let
j : S3〈3〉 → S3 be the fiber inclusion.

Let ι : S1 → Ω2S3 the adjoint of the identity of S3. Since S3〈3〉 is 3-connected,
π1(Ω2p) is an isomorphism and so maps ι to±idS1 . Therefore by applying Lemma 6.1

to the homotopy fibration sequence Ω2S3〈3〉 Ω2j→ Ω2S3 Ω2p→ Ω2K(Z, 3) ' S1, we ob-
tain that Ω2j : Ω2S3〈3〉 → Ω2S3 has a retract up to homotopy and so is injective in

homology. Since π3(S1) = π2(S1) = 0, π2(Ω2j) : π2(Ω2S3〈3〉)
∼=→ π2(Ω2S3) ∼= Z/2Z

is an isomorphism. Since Ω2S3〈3〉 is simply connected, the Hurewicz homomor-

phism hur : π2(Ω2S3〈3〉)
∼=→ H2(Ω2S3〈3〉) is an isomorphism. Since H2(Ω2j) is also

an isomorphism, the Hurewicz homomorphism

hur : π2(Ω2S3) = Z/2Z.ad2(Ση)
∼=−→ H2(Ω2S3) = Z/2Z.u2

1

is an isomorphism. Hence hur(ad2(Ση)) = u2
1 and so BV (u1) = u2

1. So we have
proved

Theorem 6.2. The Batalin-Vilkovisky operator BV : H1(Ω2S3,F2)
∼=→ H2(Ω2S3,F2)

is non trivial.

Note that for all n ≥ 4, the Batalin-Vilkovisky operator BV : Hn−2(Ω2Sn,F2)→
Hn−1(Ω2Sn,F2) = {0} is obviously zero.

Remark 6.3. (to be compared with the last paragraph of Section 1 of [4, p. 271])
Since S3 is a double suspension, S3 is a S1-pointed space (Example 2.2). Consider
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the diagonal action on Ω2S3. The adjunction map X → Ω2Σ2X is S1-equivariant
with respect to the trivial action on X and the diagonal action on Ω2Σ2X. So the
BV operator due to the diagonal action

BVdiag : H1(Ω2S3,F2)→ H2(Ω2S3,F2)

is trivial. Therefore modulo 2, this operator BVdiag is different from the BV op-
erator BVS considered in Theorem 6.2. On the contrary, over Q, BVdiag and BVS
coincide on H∗(Ω

2Σ2X;Q) for any connected space X. Indeed, by Theorem 4.4
and (1.4), they both vanish on π∗(Ω

2Σ2X) ⊗ Q which is the desuspended free Lie
algebra on H>0(X).
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