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1 Introduction

The notion of free divisor was introduced by Kyoji Saito in [14]. A reduced divisor D = V (h) ⊂ Cn

is free if the sheaf Der(− logD) of logarithmic vector fields is a locally free OCn-module. In [11]
and [4], the smaller class of linear free divisors was introduced. A free divisor is linear if there
is a basis for the module of global sections Γ(Cn,Der(− logD)) consisting of vector fields all of
whose coefficients in the basis ∂/∂x1, . . ., ∂/∂xn are linear functions. With respect to the standard
weighting of Der(Cn), such vector fields have weight zero, and we will refer to them in this way.
Let ∆ be the matrix of coefficients of such a global basis. By Saito’s criterion ([14, 1.8]), det ∆ is
a reduced equation for D. Thus, D is algebraic with homogeneous equation of degree n.

The best known example is the normal crossing divisor {x1· · ·xn = 0} in Cn, with global basis
of vector fields x1∂/∂x1, . . ., xn∂/∂xn. Three further series of examples may be found (though not
under this name) in [15].

In this paper we summarise some examples and results from [11] and [4], and give a clearer
explanation (due to Michel Brion) than the explanation given in [4] for the appearance of linear
free divisors as discriminants in quiver representation spaces. This enables us to describe some
further structure, in Sections 5, 6 and 7.

We are grateful to Michel Brion for this explanation, and to Ragnar Buchweitz for having shown
us how free divisors appear in quiver representation spaces.

2 Linear free divisors and representations of algebraic groups

Let D ⊂ Cn be a linear free divisor, let lD be the Lie algebra generated over C by the weight-zero
vector fields, let G0

D be the identity component of the group GD ⊂ Gln(C) of linear automorphisms
preserving D, and let gD be its Lie algebra. Evidently the infinitesimal action of GD determines
a Lie algebra monomorphism gD → lD. Since the integral flow of any member of gD determines a
curve in G0

D, this homomorphism is an isomorphism, and GD is n-dimensional. It is easily seen to
be algebraic. Since, outside D, Der(− logD) coincides with the sheaf DerCn of all derivations, at
each point of Cn rD the tangent space to the G0

D-orbit is equal to Cn. It follows that Cn \D is a
single orbit of G0

D.
So to every linear free divisor D ⊂ Cn there corresponds a connected n-dimensional algebraic

subgroup G0
D ⊂ Gln(C) with an open orbit. However, the converse is not always true. Let G be

such a group, and let ∆ be the matrix of coefficients of the vector fields χ1, . . ., χn on Cn gen-
erating the infinitesimal action of G. Then det ∆ is an equation for the complement D of the
open orbit, which is therefore a divisor. If det ∆ is reduced (i.e. square-free), then by Saito’s
criterion D is a free divisor and χ1, . . ., χn form a (global) basis for Der(− logD). But if det ∆
is not reduced then D can never be a linear free divisor - its reduced equation has degree less than n.

Conclusion Linear free divisors in Cn are in bijection with connected algebraic subgroups G of
Gln(C) satisfying
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(Dim) dimG = n (O) G has an open orbit (Red) det ∆ is reduced.

Representations satisfying (O) are known as prehomogenenous spaces.

3 Examples

3.1 Irreducible linear free divisors

In [15], irreducible prehomogeneous spaces are classified, up to the action of a “castling transfor-
mation” closely related to the Bernstein-Gelfand- Ponomarev reflection functors introduced in [3]
and described in Section 7 below. The class of prehomogeneous spaces satisfying (Dim), (O) and
(Red) is closed under the operation of castling, and thus each example gives rise to an infinite
series. The simplest of these arises as the discriminant in the (four-dimensional) space of binary
cubics ([15, §5 Proposition 6]). In this guise it is sometimes known as the umbilic bracelet. Rep-
resentations with discriminant a linear free divisor giving rise to two further castling classes are
described in [15, §5 Propositions 11 and 15].

When it is a divisor, the complement of the open orbit in an irreducible prehomogeneous space
is necessarily irreducible ([15, §4 Proposition 12]). Besides {0} ⊂ C, the examples of Sato and
Kimura are the only irreducible linear free divisors that we know. In Section 4 below, we explain
how linear free divisors arise as discriminants in quiver representation spaces. Among these only
0 ⊂ C is irreducible.

By a classical theorem of E.Cartan, if the faithful representation of G on V is irreducible, then
G is reductive. All the groups GD in Sato-Kimura’s list are therefore reductive. The groups we
will obtain in quiver representations are also reductive. Before turning to quivers, we therefore give
one series of non-reductive example. Many more are given in [11, Subsection 4.2].

3.2 The Borel subgroup of Gln(C)

The group Bn of upper triangular matrices acts on the space Symn of symmetric n × n matrices
by transpose conjugation, B · S = BtSB. This action evidently satisfies (Dim); it satisfies (O)
because, for example, the isotropy of the point In (the identity matrix) is Bn ∩ O(n) = {id}. Let
D be the complement of the open orbit. To see that the representation also satisfies (Red), we
reason as follows: for any n × n matrix S, let Sj be the j × j top left hand corner of S. Since
(B · S)j = Bj · Sj , it follows that the divisor {detSj = 0} is preserved by the action of Bn. Hence
∪n

j=1{detSj = 0} ⊂ D. But the degree of ∪n
j=1{detSj = 0} is equal to the dimension of Symn

and thus to the degree of det ∆. It follows that det ∆ is reduced. The group Bn is of course not
reductive; indeed, in the representation we describe here, {Sj = 0} has no invariant complement.

4 Linear free divisors in quiver representation spaces

A quiver Q is an oriented graph, consisting of a collection Q0 of nodes and a collection Q1 of arrows.
A representation V of a quiver is the assignation of a space V (x) for each x ∈ Q0 and a linear
map V (α) : V (tα) → V (hα) for each α ∈ Q1. Here tα (the tail of α) denotes the node at which α
begins, and hα (the head of α) the node where α ends. If V and W are representations of Q then
a morphism of representations V → W is a set of linear maps

(
ϕx : V (x) → W (x)

)
x∈Q0

satisfying
the commutation relations

ϕhα ◦ V (α) = W (α) ◦ ϕtα

for all α ∈ Q1. The representations of Q and their morphisms form an abelian category, Rep(Q).
It is not hard to show (cf [1, Proposition 1.4 page 52]) that this category is hereditary: every sub-
object of a projective object is projective. From this it follows that every object (representation)
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has a projective resolution of length no more than 1, so that Exti
Q(V,W ) = 0 for all V,W ∈ Rep(Q)

and all i ≥ 2.
A representation of Q is indecomposable if it is not isomorphic to a direct sum in Rep(Q). The

dimension vector of a representation V is the vector (dimV (x))x∈Q0 . Given a dimension vector
d = (dx)x∈Q0 ∈ NQ0 , we can form the vector space Rep(Q,d) consisting of all representations in
which V (x) = Cdx . Every representation with dimension vector d is isomorphic to some (non-
unique) member of Rep(Q,d).

The group GlQ,d :=
∐

x∈Q0
Gldx(C) acts on Rep(Q,d) by

(ϕx)x∈Q0 ·
(
V (α)

)
α∈Q1

=
(
ϕhα ◦ V (α) ◦ ϕ−1

tα

)
α∈Q1

.

It is (almost) this group acting on this space that will play the role of G0
D. But first we have to

factor out a 1-dimensional central subgroup Z0 which always acts trivially: the subgroup of those(
ϕx

)
x∈Q0

for which each ϕx is a scalar matrix λid, with the same λ for all x ∈ Q0. We denote by
P GlQ,d the quotient GlQ,d/Z0. This group acts faithfully on Rep(Q,d), provided Q is connected.
Now (Dim) holds if and only if dim P Gl(Q,d) = dim Rep(Q,d), and thus if and only if∑

x∈Q0

(dx)2 −
∑

α∈Q1

dtαdhα = 1. (1)

The left hand side of (1) is a quadratic form in d; the associated (non-symmetric) bilinear form

〈d, e〉 :=
∑

x∈Q0

dxex −
∑

α∈Q1

dtαehα (2)

is known as the Euler form, and plays a central rôle in the theory, as we shall see in the next section.

Example 4.1. If Q is any quiver whose underlying graph is a tree and d is the dimension vector
assigning the dimension 1 to each vertex, then 〈d,d〉 = 1, so (Dim) holds. It is easy to see that
the other conditions hold too, and that the discriminant D is a normal crossing divisor.

In general (1) is not a sufficient condition for (O); we have also to ensure that there is at least
one point V ∈ Rep(Q,d) (and hence an open set of points) whose isotropy (in P GlQ,d) is finite.
Clearly, indecomposability of V is a necessary condition for this to hold: if V = V1 ⊕ V2 then each
of V1 and V2 contributes at least a 1-dimensional subgroup to the isotropy of V in GlQ,d.

Example 4.2. ([4, Example 7.5]) Consider the three quivers and dimension vectors

(i) 1

��
1 // 3 1oo

1

OO

(ii) 1

1 // 3

OO

1oo

1

OO

(iii) 1

1 // 3

OO

��

1oo

1

In the representation space of each one, (Dim) holds - it is independent of the orientation of the
arrows. In (i), (O) and (Red) also hold and D is a linear free divisor. In (ii), (O) holds but
(Red) fails. In (iii), (O) fails - the generic representations decompose. Many more examples, with
explicit equations, are given in [4, §7-10].

Definition 4.3. The dimension vector d is a root of the quiver Q if Rep(Q,d) contains an inde-
composable representation, and a Schur root if the generic representation in Rep(Q,d) is indecom-
posable. It is a real root if up to isomorphism there is only one indecomposable representation in
Rep(Q,d).
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In Example 4.2 the dimension vector shown is a real root for all three quivers, but only a Schur
root for the first and second.

If d is a real Schur root then the representation of P GlQ,d on Rep(Q,d) satisfies (O). In fact,
if d is a real Schur root then (Dim) is also satisfied. This is because if V ∈ Rep(Q,d) is stably
indecomposable (meaning that all representations in a neighbourhood of V are indecomposable)
then its isotropy in P GlQ,d is trivial (see e.g. [12]). The main theorem (Corollary 5.5) of [4] was
the statement that if Q is a Dynkin quiver — meaning that the underlying unoriented graph of Q
is a Dykin diagram of type An, Dn or E6, E7 or E8 — then when d is a real Schur root, (Red) is
also satisfied, so that the complement of the open orbit is a linear free divisor. In section 5.1 below
we give a considerably simpler proof, pointed out to us by Michel Brion, than was given in [4].

4.1 The fundamental exact sequence

Let V and W be representations of a quiver Q. In [13], Ringel constructed an exact sequence

0 → HomQ(W,V ) → HomC(W,V )
MW,V−→ HomC(tW, hV )

EW,V−→ Ext1(W,V ) → 0. (3)

Here
HomC(W,V ) =

⊕
x∈Q0

HomC(W (x), V (x))

HomC(tW, hV ) =
⊕

α∈Q1

HomC(W (tα), V (hα)),

and the map MW,V sends (ϕx)x∈Q0 to
(
ϕhα◦W (α)−V (α)◦ϕtα

)
α∈Q1

. It is evident that kerMW,V =
HomQ(W,V ) since MW,V simply measures commutativity of the diagrams (one for each α ∈ Q1)

W (tα)
W (α) //

ϕtα

��

W (hα)

ϕhα

��
V (tα)

V (α)
// V (hα)

(4)

The map EW,V sends (ψα)α∈Q1 to an extension

0 → V
i−→ X

j−→ W → 0 (5)

where X(x) = V (x) ⊕W (x) for each x ∈ Q0, i and j are the usual inclusion and projection, and
for each α ∈ Q1, X(α) has matrix (

V (α) −ψα

0 W (α)

)
(6)

Exactness of (3) can be checked by a straightforward calculation.
It is useful to consider the case where W = V . For then HomC(V, V ) =

⊕
x∈Q0

End(Vx) is
naturally identified with the Lie algebra glQ,d, HomC(tV, hV ) is naturally identified with the space
of infinitesimal deformations of V , and under these identifications MV,V is the infinitesimal action
of glQ,d associated with the action of GlQ,d on the space of representations. That is, if ϕx(t) is a
curve in GlQ,d based at id, then

MV,V (
d

dt

(
ϕx(t)

)
|t=0) =

d

dt

(
ϕ(t) · V )|t=0.

In particular, Ext1Q(V, V ) is the normal space to the GlQ,d orbit through V , and vanishes if and
only if V is rigid - i.e. has an open orbit.

The sequence is the key to Schofield’s method ([16]) for finding equations for the divisor D.
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5 Schofield’s method

Suppose that the vector space V is prehomogeneous for the action of the connected group G, and
that the complement D of the open orbit in V is a divisor. If Di is an irreducible component of D
and has reduced equation hi then hi is a semi-invariant for the contragredient action of G on C[V ]
— that is, there is a linear character χ : G → C such that for v ∈ V and g ∈ G, hi(gv) = χ(g)hi(v).
For we must have g(Di) = Di (remember that G is connected), and so hi ◦ g is a scalar multiple
of hi. The scalar is easily seen to be a linear character. Conversely, if h ∈ C[V ] is a semi-invariant
with associated character χ, then {h = 0} is an invariant hypersurface, and thus contained in D.
It follows that we can find equations for D by looking at the semi-invariants of the action of G on
C[V ]. Sato and Kimura show in [15] that if h1, . . ., hs are the irreducible factors of the equation of
D then the subring of C[V ] generated by the semi-invariants is equal to C[h1, . . ., hs].

Now let V ∈ Rep(Q,d) andW ∈ Rep(Q, e). The morphismMW,V : HomC(W,V ) → HomC(tW, hV )
of Ringel’s exact sequence is equivariant with respect to the natural action of GlQ,e ×GlQ,d. Cru-
cially, if 〈e,d〉 = 0 then MW,V has a square matrix. Let P (W,V ) = det MW,V . Because of the
equivariance of MW,V , P (W,V ), considered as a polynomial on Rep(Q, e) × Rep(Q,d), is a semi-
invariant for the action of GlQ,e × GlQ,d. It may, of course, be identically zero. In fact since
ker MW,V = HomQ(W,V ), P (W,V ) = 0 if and only if HomQ(W,V ) 6= 0. We are interested in
semi-invariants for the action of GlQ,d on Rep(Q,d), and so we fix W and write PW (V ) in place of
P (W,V ). We have established

Lemma 5.1. Let d be a real Schur root of Q, let 〈e,d〉 = 0, and let W ∈ Rep(Q, e). Then PW is
non-trivial if and only if for generic V ∈ Rep(Q,d), HomQ(W,V ) = 0. 2

By the exactness of Ringel’s sequence (3), any two of the following three statements imply the
third:

(1) 〈e,d〉 = 0 (2) HomQ(W,V ) = 0 (3) Ext1Q(W,V ) = 0

It follows that if d is a real Schur root of Q, then to find equations for the discriminant D in
Rep(Q,d), we look for the left perpendicular category, ⊥V , of the generic representation V ∈
Rep(Q,d) — that is, for representations W such that

HomQ(W,V ) = 0 = Ext1Q(W,V ).

Schofield shows in [16] that the irreducible components of D are defined by the polynomials PW

coming from the simple objects in ⊥V . In fact, as Derksen and Weyman point out in [6], if W1↪→W
is an inclusion in ⊥V , then PW1 divides PW . More precisely, the cokernel W2 of this inclusion also
lies in ⊥V , and from the short exact sequence 0 → W1 → W → W2 it follows that PW = PW1PW2 . It
was shown by both Schofield [16] and Geigle and Lenzing ([9]) that ⊥V is equivalent to the category
of all representations of some quiver Q(⊥V ) with one fewer vertices than Q; in Rep(Q(⊥V )) there
are |Q0|−1 simple objects (the 1-dimensional representations concentrated at a single node). Thus
D has |Q0| − 1 irreducible components, a fact first proved by V. Kac. A topological proof is given
below, in Section 8.

It is sometimes transparently clear that the existence of a homomorphism W → V implies a
codimension 1 degeneracy in V . In the quiver (i) of Example 4.2 with the dimension vector shown,
the discriminant has four components. On each, three of the four arrows have coplanar images.
Coplanarity of the images of A,B,C is evidently equivalent to the injectivity of the homomorphism
ϕ shown here, where W is a generic (rigid) representation for the dimension-vector shown.

W 0

��
1 // 2 1oo

1

OO
ϕ−→

V 1

��
1 A // 3 1Boo

1
C

OO (7)
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With larger dimension vectors or more complicated quivers this transparency may be lost. Never-
theless the fact (see 7.6 below) that the following two (generic) representations are perpendicular,
gives us a clear geometrical description of a degeneracy for the representations on the right: there
should exist a 3-dimensional subspace of the space at the central node, containing the image of one
of the four maps (here D), and meeting each of the other three images in a line.

W 2

��
1 // 3 1oo

1

OO

V 2
D��

2 A // 5 2
B

oo

2
C

OO (8)

5.1 Vanishing extensions and the question of reducedness

Let d be a real Schur root of the quiver Q with divisor D complementary to the open orbit in
Rep(Q,d). We have already seen that (Dim) and (O) hold, so to conclude that D is a linear free
divisor, we need only show that (Red) also holds. In [4] there is a rather long argument showing
that this is the case if

(OD): each irreducible component of D is the closure of a single orbit.

Michel Brion pointed out a much simpler argument to the authors of [4],[11]. Write dim Rep(Q,d) =:
N. The hypothesis (OD) implies that if V0 is a representation whose orbit is open in D, then there
are weight-zero logarithmic vector fields δ1, . . ., δN−1 whose values at V0 span TV0D. It remains
to find one further logarithmic vector field δN such that at V0, the determinant of the matrix
of coefficients [δ1, . . ., δN ] is a reduced equation for D. The key point is that the isotropy group
GV0 ⊂ P GlQ,d is reductive - it is connected and 1-dimensionsional, and thus isomorphic to C∗. It
follows that the space TV0D, evidently invariant under GV0 , has an invariant complement. The
action of GV0 on this complementary line ` is not trivial, because otherwise GV0 would be contained
in the isotropy of all V on the line, whereas for generic V ∈ Rep(Q,d), GV is just {id}. From this
non-triviality it follows that the infinitesimal action of GV0 gives us a vector field δN on Rep(Q,d),
tangent to `, and whose restriction to ` has the form λ∂/∂t, with respect to a suitable coordinate
λ on `. As ` is complementary to TV0D, this coordinate can be extended to a neighbourhood of V0

in such a way that λ = 0 is locally a reduced equation for D. With respect to such a coordinate
system, the matrix [δ1, . . ., δN ] now takes the form ∗ · · · ∗ ∗

∗ · · · ∗ ∗
0 · · · 0 λ

 (9)

Since, at V0, the first N − 1 columns span the N − 1 dimensional space TV0D, it follows that
det[δ1, . . ..δN ] is a reduced equation for D.

Brion’s invariant line turns out to have an interesting additional significance. We now give
an explicit construction of such a line, exhibiting a non-split extension whose central term is the
generic representation V , which splits when V moves into the discriminant D.

Once again, let V0 be a smooth point on D, and assume that the orbit of V0 is open in D.

Lemma 5.2. (i) The representation V0 is a direct sum (in Rep(Q)) of uniquely determined sub-
modules V1 and V2.
(ii) Both submodules are rigid, and their dimension vectors d1 and d2 are real Schur roots.
(iii) After perhaps permuting V1 and V2, ExtQ(V1, V2) = 0 and ExtQ(V2, V1) is 1-dimensional.

Proof As remarked in Section 5, dim Ext(V0, V0) = Rep(Q,d)/TV0G·V0. Thus dim Ext(V0, V0) =
1. By the exactness of (3), dim HomQ(V0, V0) = q(d)+dim Ext1(V0, V0) = 2. The representation V0
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must split because by the definition of real Schur root d, there is only one orbit of indecomposable
representations in Rep(Q,d). As dim Hom(Vi, Vi) ≥ 1 for any representation Vi, it follows that
V0 splits exactly into two indecomposable representations, V1 and V2, with dim HomQ(V1, V1) =
dim HomQ(V2, V2) = 1 and

HomQ(V1, V2) = HomQ(V2, V1) = 0. (10)

The representations V1 and V2 are unique because for i = 1, 2 HomQ(Vi, V0) is 1-dimensional,
and therefore must be generated by the inclusion Vi → V1 ⊕ V2. The representation V1 is rigid
because for any representation V ′

1 ∈ Rep(Q,d1) in a sufficiently small neighborhood of V1, the
representation V ′

1

⊕
V2 is in D (being decomposable) and therefore in the orbit of V0, since this

orbit is open in D. Hence by unicity, V1 and V ′
1 are isomorphic. The same argument applies to V2.

Since
Ext1Q(V, V ) =

⊕
i,j=1,2

Ext1Q(Vi, Vj)

there is only one non-zero summand on the right, and it is 1-dimensional.
By the rigidity of V1 and V2, Ext1Q(Vi, Vi) = 0 for i = 1, 2. As dim HomQ(Vi, Vi) = 1 for i = 1, 2,

it follows that d1 and d2 are real Schur roots.
We label the two representations so that

dim Ext1Q(V2, V1) = 1, dim Ext1Q(V1, V2) = 0, (11)

or, equivalently 〈V1, V2〉 = 0, 〈V2, V1〉 = −1 and 〈V1, V1〉 = 〈V2, V2〉 = 1. 2

The representation V0 is, of course, a split extension of V2 by V1. Where can we find a non-split
extension? The answer is, arbitrarily close to V0, as the following construction shows.

Choose θ ∈ HomC(tV2, hV1) so that its image under the inclusion HomC(tV2, hV1) → HomC(tV0, hV0),
generates CokerMV0,V0 . Construct a new representation V (λθ) of Q, depending on the complex
parameter λ, using Ringel’s construction:

0 // V1(tα) //

V1(α)
��

V1(tα)⊕ V2(tα) //»
V1(α) λθ

0 V2(α)

–
��

V2(tα) //

V2(α)
��

0

0 // V1(hα) // V1(hα)⊕ V2(hα) // V2(hα) // 0

(12)

The representation in the centre is V (λθ). Evidently V (λθ) = V0 when λ = 0. Since the tangent
space to the line ` := {V (λθ) : λ ∈ C} is spanned by θ, which does not belong to Image(MV0,V0) =
TV0D, the line we get is a complement to TV0D. It follows that except for a finite number of values
of λ, V (λθ) /∈ D and the extension (12) is not split, and therefore generates Ext1Q(V2, V1).

Lemma 5.3. The line ` := {V (λθ) : λ ∈ C} is invariant under the action of the isotropy group
GV0 ⊂ GlQ,d of V0.

Proof Clearly GV0 ⊂ HomQ(V0, V0) so by what we have observed above, GV0 ⊂ HomQ(V1, V1)⊕
HomQ(V2, V2). Thus GV0 is isomorphic to C∗×C∗ acting by scalar multiplication on each of the
two summands. Let (u, v) ∈ GV0 . The diagram

V1(tα)⊕ V2(tα)

»
u 0
0 v

–
//»

V1(α) λθ
0 V2(α)

–
��

V1(tα)⊕ V2(tα)»
V1(α) u−1vλθ

0 V2(α)

–
��

V1(hα)⊕ V2(hα)

»
u 0
0 v

–
// V1(hα)⊕ V2(hα)

(13)

commutes; it follows that (u, v) · V (λθ) = V (u−1vλθ). Thus GV0 acts on `. 2
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Theorem 5.4. Let d be a real Schur root of the quiver Q, and let D ⊂ Rep(Q,d) be the complement
of the open orbit. If there is a GlQ,d-orbit which is open in the irreducible component Di of D, then
the equation h of the discriminant D is reduced along Di.

Proof We continue to use the notation and assumptions of the lemma. Regard λ as a coordinate
on `. Identify GV0 with C∗×C∗ as described above, and consider the curve σ(u) = (1, u) ∈ GV0 .
As (1, u) · V (λθ) = V (uλθ), we have

d

du

(
σ(u) · V (λθ)

)
|u=1 = V (λθ). (14)

Now consider σ′(1) as an element of glQ,d via the inclusion GV0 ⊂ GlQ,d. Then (14) means that the
linear vector field δ on Rep(Q,d) coming, via the infinitesimal action of Gl(Q,d), from the tangent
vector σ′(1), restricts to λ∂/∂λ on `.

Since the corank at V0 of the map MV,V is one, its image generates the tangent space TVD. Let
us choose linear vector fields δ1, · · · , δN−1, where N = dim Rep(Q,d), whose values at V0 generates
this space. The determinant det(δ, δ1, · · · , δN−1) is then reduced at V0 since it is a non-zero multiple
of λ when restricted to `. Since we know also that it is a multiple of the equation of the discriminant
we conclude that the germ at V0 of this equation is reduced. 2

Proposition 5.5. Let d be a real Schur root of the quiver Q, and V0 = V1
⊕
V2 the unique decom-

position of the representation at a smooth point of D, with summands ordered as in Lemma 5.2.
Then
(i) the generic representation V ∈ Rep(D,d) is given by an extension of V2 by a unique subrepre-
sentation isomorphic to V1:

0 // V1
// V // V2

// 0 (15)

(ii) we have ExtQ(V, Vi) = 0 , ExtQ(Vi, V ) = 0 for i = 1, 2 and HomQ(V, V1) = HomQ(V2, V ) = 0
and in particular V2 ∈ ⊥V and V1 ∈ V ⊥

Proof The only part of (i) which has not yet been proved is the uniqueness. This follows from
the fact that dim HomQ(V, V2) = dim HomQ(V1, V ) = 1, which in turn can be deduced from the
equalities (10) and (1) and from the long exact sequences obtained from (15) by applying the
functors Hom(Vi, •) and Hom(•, Vi). The equalities of (ii) are proved similarly. 2

Now we change our notation slightly. To take account of the different irreducible components Di

of D, add a subindex i to the objects in the forgoing discussion. So a generic representation lying
in Di becomes Vi0 and its canonical splitting becomes Vi0 = Vi1 ⊕ Vi2. The simple object of ⊥V
whose associated semi-invariant polynomial defines Di is now Wi.

Lemma 5.6. (i) dimHomQ(Wi, Vi0) = dimExt1(Wi, Vi0) = 1.
(ii) HomQ(Wi, Vi1) = 0
(iii) Ext1Q(Wi, Vi2) = 0.

Proof Recall that PWi(V ) = det MWi,V . At the regular point Vi0 of {PWi = 0}, MWi,Vi0 must
have corank 1. This proves the first assertion. The second follows from the fact that Vi1 is a
sub-object of the generic representation V , whereas HomQ(Wi, V ) = 0. Thus HomQ(Wi, Vi2) is
1-dimensional. Now apply HomQ(Wi, •) to the extension (15); because Wi ∈⊥ V , this gives an
isomorphism HomQ(Wi, Vi2) ' Ext1Q(Wi, Vi1). 2

The non-trivial homomorphism Wi → Vi2 is an injection, since its kernel also lies in ⊥V . Define
Ci by the sequence

0 → Wi → Vi2 → Ci → 0 (16)

Since Vi2 and Ci lie in ⊥V , they give rise to semi-invariant polynomials PVi2 and PCi .
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Proposition 5.7. PCi is not identically zero; PVi2 = PWiPCi.

Proof As HomQ(V2, V ) = 0, PV2(V ) 6= 0. The short exact sequence (16) in ⊥V gives rise to the
factorisation of PVi2 . 2

Let d be a real Schur root of Q and let V be a generic representation in Rep(Q,d). Construct
a new quiver Q′ = Q′(⊥V ) as follows:

• Q′
0 is the set of irreducible components of the discriminant D

• a(⊥Q′)(Dj , Di), the number of arrows in ⊥Q′ from Dj to Di, is the highest power of PWj

dividing PV2,i .

This quiver contains all the arrows of Schofield’s quiver ⊥Q. By definition, a(⊥Q′)(Dj , Di) is the
number of times Wj appears in a composition series of Ci in ⊥V . On the other hand, we have

Lemma 5.8. a(⊥Q)(Dj , Di) = dimHomQ(Wj , Ci).

Proof Let Ei be the simple object in Rep(⊥Q) concentrated at vertexDi. For i 6= j, a⊥Q(Dj , Di) =
−〈Ej , Ei〉⊥Q. By [16, Theorem 2.4], 〈Wj ,Wi〉Q = 〈Ej , Ei〉⊥Q. As i 6= j, HomQ(Wj ,Wi) = 0. Hence

a(⊥Q)(Dj , Di) = dim ExtQ(Wj ,Wi).

Since j 6= i, HomQ(Wj , Vi0) = ExtQ(Wj , Vi0) = 0, and thus also HomQ(Wj , Vi2) = ExtQ(Wj , Vi2) =
0. By applying HomQ(Wj , ) to the exact sequence (16), we deduce that

HomQ(Wj , Ci) ' ExtQ(Wj ,Wi). 2

5.2 Dynkin quivers

A quiver Q is a Dynkin quiver if its underlying graph is a Dynkin diagram of type An, Dn, E6, E7

or E8. Gabriel proved in [8] that the Dynkin quivers are precisely those of “finite representation
type”: that is, such that for any d, Rep(Q,d) contains only finitely many orbits. For such quivers
(OD) always holds, and thus by Brion’s argument, described in the preceding section, we conclude

Theorem 5.9. ([4]) If d is a real Schur root of the Dynkin quiver Q then the discriminant D in
Rep(Q,d) is a linear free divisor. 2

6 Where are the vanishing cycles?

In singularity theory one expects the rank of the homology of geometrical objects to diminish
when they degenerate (acquire singularities). With surprising frequency, the rank of the vanishing
homology (the Milnor number, in the most classical case) is closely related (even equal) to the
dimension of the miniversal base space of the degeneration, the Tjurina number. The discriminant
in the versal base space is the set of parameter values for which the rank of the homology of the
corresponding fibre is less than maximal. This leads us to the question heading this section. What
homology theory would allow us to associate to the degenerations of representations a ‘vanishing
homology’? In Section 5.1 we associated, to each irreducible component of the discriminant, some-
thing that behaves like a vanishing cycle: the extension (15), which splits when V moves onto
the discriminant. This suggests that we should associate to each V ∈ Rep(Q,d) some ‘homology’
derived from the (poset of) sub-representations.
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7 BGP reflection functors

In [3], Bernstein, Gelfand and Ponomarev re-proved and explained Gabriel’s theorem characterising
the finite type quivers as Dynkin quivers. Their principal tools were a pair of “reflection functors”
which we now describe.

Let Q be a quiver and let x ∈ Q0 be a sink - a node at which some arrows arrive and none
depart. Let V be a representation of Q. Let Q′ be a new quiver differing from Q only in that all
the arrows arriving at x are reversed. Denote the arrows of Q by α, β, etc., and the arrows of Q′ by
α′, β′, . . .. We make use of the evident bijection between the two sets of arrows. A representation
V ′ of Q′ is constructed as follows:

V ′(y) = V (y) if y ∈ Q0 r {x}
V ′(x) = ker

(⊕
α∈h−1(x) V (tα)

P
V (α)−→ V (x)

)
V ′(α′) = V (α) if tα′ 6= x

V ′(β′) = composite of V ′(x) →
⊕

α∈h−1(x) V (tα)
pr−→ V ′(hβ′) if tβ′ = x

(17)

We denote the representation V ′ obtained in this way by Rh
x(V ) (the ‘R’ stands for ‘reflection’ and

the ‘h’ for ‘head’).
If x is a source - a node from which some arrows depart but none arrive - then a new quiver Q′

is defined by reversing all of the arrows leaving x, and a new representation V ′ is defined by

V ′(y) = V (y) if y ∈ Q0 r {x}
V ′(x) = Coker

(
V (x) →

⊕
α∈t−1(x) V (hα)

)
V ′(α′) = V (α) if tα 6= x
V ′(β′) = composite of V ′(tβ′) →

⊕
α∈t−1(x) V (hα) → V ′(x) if hβ′ = x

(18)

We denote the representation V ′ obtained in this way by Rt
x(V ).

We call Rh
x and Rt

x “BGP reflections”. Where it is not necessary to distinguish between the
two, we simply speak of Rx. A node x which is either a sink or a source in Q will be referred
to as monotone. In [3] it is shown that if V is an indecomposable representation of Q and x is a
monotone node then Rx(V ) is also indecomposable, unless V is supported only at x, in which case
Rx(V ) = 0. Both Rh

x and Rt
x are functors: it is easily seen that a morphism ϕ ∈ HomQ(V1, V2)

gives rise to Rx(ϕ) ∈ HomQ′(Rx(V1), Rx(V2)), and Rx(ϕ1 ◦ ϕ2) = Rx(ϕ1) ◦Rx(ϕ2).
The reflections Rh

x and Rt
x can be applied to dimension vectors: if x is a sink, then Rh

x(d) is
the dimension vector d′ defined by

d′y = dy if y 6= x d′x =
∑

α∈h−1(x)

dtα − dx (19)

It is the dimension vector of Rh
x(V ) if V is indecomposable in Rep(Q,d), unless V is supported only

at x. For, with this exception, the indecomposability of V implies that
(⊕

α∈h−1(x) V (tα)
P

V (α)−→

V (x)
)

is an epimorphism. Similarly, if x is a source and d is a dimension vector then Rt
x(d) is the

dimension vector d′ defined by

d′y = dy if y 6= x d′x =
∑

α∈t−1(x)

dhα − dx (20)

and is the dimension vector of Rt
x(V ) unless V is supported only at x. The Euler form (2) is

invariant by this transformation :

Lemma 7.1. ([3, Lemma 2.1]) Let d and e be dimension vectors and let d′ = Rx(d) and e′ = Rx(e′)
be their images by a BGP reflection, Then 〈e,d〉 = 〈e′,d′〉 2
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Let Q be a quiver without oriented cycles, and choose an ordering x1, . . ., xn of the vertices
compatible with the arrows, i.e. so that for each arrow α, tα ≥ hα. The composite functors
Ct := Rt

x1
◦· · ·◦Rt

xn
and Ch := Rh

xn
◦· · ·◦Rh

x1
are called Coxeter functors in [3], and are independent

of the choice of ordering compatible with the arrows. They map Rep(Q) to itself.
The crucial point in the proof of Gabriel’s theorem in [3] is the fact that it is only for Dynkin

quivers that the group generated by the Coxeter transformations acting on the space of dimension
vectors is finite. As we have seen, this leads both to the conclusion that if D is a Dynkin quiver
then for every real Schur root d the discriminant in Rep(Q,d) is a linear free divisor, and that
only finitely many linear free divisors arise in this way. Nevertheless, functoriality means that if
d is a real Schur root for a non-Dynkin quiver for which the discriminant in Rep(Q,d) is a linear
free divisor, then by applying the BGP reflection functors we get infinitely many more. We now
explain this in more detail.

Proposition 7.2. Let d be a real Schur root with indecomposable representation V (d). Let Rx

be a BGP reflection such that Rx(d) 6= 0. Then Rx(d) is also a real Schur root, and V (Rx(d)) =
Rx(V (d)).

Proof By [3, Theorem 1.1], Rx(V (d)) is indecomposable with dimension vector Rx(d) and, more-
over, applying the BGP transformation R′

x with same center we get the equality R′
x(Rx(V (d))) =

V (d). From this it follows that there is an isomorphism

HomQ′(V (d), V (d)) → HomQ(Rx(V (d)), Rx(V (d))),

where Q′ = Rx(Q). Both spaces are then one dimensional and since q(d) = q(Rx(d)) = 1 this
implies ExtQ′(Rx(V (d)), Rx(V (d))) = 0 so that Rx(V (d)) is rigid as required. 2

From now on we assume that d is a sincere real Schur root, (dx 6= 0 for all x ∈ Q0) and that
Rx(d) is also sincere.

The simple objects in ⊥V (d) are the representations Wi := V (ei)1≤`n−1, for some real Schur
roots ei. Because d is sincere, Rx(ei) 6= 0 so that by Proposition 7.2, Rx(ei) is a real Schur root
and Rx(V (ei)) = V (Rx(ei)) ∈ ⊥Rx(V (d)). Similarly, because Rx(d) is sincere, R′

x(Rx(Wi)) 6= 0
and therefore by [3, 1.1] R′

xRx(Wi) = Wi.
Let V := V (d) and Wi := V (ei). According to Schofield, fi = det(MWi,V ) are the irreducible

reduced equations of the components of D.

Proposition 7.3. If D satisfies (OD), then so does the divisor D′ obtained by the BGP reflection
Rx.

Lemma 7.4. The invariants PW ′
i

= det(MW ′
i ,V ′), are the irreducible equations of the components

of D′

Proof We have to prove that the W ′
i are the simple objects of ⊥V ′. We deal with the case where

Rx = Rh
x. The case of Rt

x is similar.
We know that Wi = Rt

x(Rh
x)(Wi) = Rt

x(W ′
i ). If W ′

i was not simple there would exist a non
trivial exact sequence

0 // W ′ // W ′
i

// W ′′ // 0

in ⊥V ′. Being a quotient is preserved by the functor Rt
x. (Dually, being a submodule is preserved

by Rh
x). Therefore Rt

x(W ′′) is a quotient of Rt
x(W ′

i ) = Wi. Since Wi is simple, Rt
x(W ′′) = 0 or

Rt
x(W ′′) = Wi, and the representation W ′′ in the first case, or W ′ in the second case, must be

concentrated at x. These conclusions contradict the relations 〈W ′′, V ′〉 = 0 and 〈W ′, V ′〉 = 0, since
d′x −

∑
hα′=x d

′
tα = dimVx 6= 0. 2
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Proof of 7.3: We continue with the case of Rh
x. The argument for Rt

x is similar. We have to
show that if V ′

i,0 = V ′
i,1

⊕
V ′

i,2 is a general point in the component D′
i of of the divisor D′ then

ExtQ′(V ′
i,0, V

′
i,0) is one-dimensional. We will prove it by showing that V ′

i0 ' Rx(Vi0), in two steps.

(i) First, dimRx(Vi0) = Rx(d), so that Rx(Vi0) is an element of Rep(Q,Rx(d)).

(ii) Second, dim HomQ′(Rx(Vi0), Rx(Vi0)) = 2.

By [3, Lemma 1.1], Rx(Vi,0) = Rx(Vi,1)⊕ Rx(Vi,2). By [3, Theorem 1.1], Rx(Vi,1) and Rx(Vi,2)
are indecomposable with the expected dimension vectors Rx(d1), Rx(d2), from which (i) follows,
unless Vi1 or Vi2 is the simple representation Ex concentrated at x. In the case of a sink (Rx = Rh

x),
Ex cannot be a quotient of V because the composition of

⊕
hα=x Vtα → Vx → Ex would have to

be be zero and onto at the same time. This implies that Ex = Vi,1. But by 5.5, Vi,1 ∈ V ⊥, and
this would give 〈V,Ex〉 = dx −

∑
hα=x dtα = 0 contradictioning the fact that Rx(d) is sincere. So

(i) holds. Now by (i) we know that Rt
x ◦Rh

x(Vi0) = Vi0, and the map

HomQ(Vi0, Vi0) → HomQ′(Rh
x(Vi0), Rh

x(Vi0))

is bijective, with inverse given by the functor Rt
x. This proves (ii). It follows that both Hom

spaces are two-dimensional, and thus that dim Ext(Rh
x(Vi0), Rh

x(Vi0)) = 1. Hence (OD) holds for
the component of D′ containing V ′

i0. It remains only to show that this component is D′
i.

This holds because for each Wj , dim (HomQ′(Rh
x(Wj), Rh

x(Vi0))) = dim (HomQ(Wj , Vi0)) is dis-
tinct from zero only when j = i. This proves that Rh

x(Vi0) is in D′
i and no other D′

j . 2

Example 7.5. Consider the star quiver Q of Example 4.2, with all arrows pointing in to the central
node. Order Q0 so that the central node is the zero’th, and label each arrow by the node at its tail.
The dimension vector d = (3, 1, 1, 1, 1) gives rise to a linear free divisor in a space of dimension 12.
The vector e = (2, 1, 1, 1, 0) is a real Schur root whose generic representation V (e) is in ⊥V (d), and
gives rise to the semi-invariant det[α1, α2, α3]. This representation and the three others obtained
by permuting the last four entries in e are the simple objects of ⊥V (d).

Applying repeatedly to these representations the Coxeter functor Ct. From 7.3 we deduce :

Proposition 7.6. For n ≥ 1 let

dn = (2n+ 1, n, n, n, n) en =
(
n+ 1, [

n+ 1
2

], [
n+ 1

2
], [
n+ 1

2
], [
n+ 1

2
] + (−1)n

)
.

Then
(i) The discriminant in Rep(Q,dn) is a linear free divisor of degree 8n2 + 4n.
(ii) V (en) ∈ ⊥V (dn), and PV (en) is one of the four equations defining the irreducible components
of the discriminant in Rep(Q,dn). The other three are obtained similarly, after permuting the last
four entries in en. 2

8 Logarithmic differential forms

We summarise a discussion in [11]. If D is a linear free divisor with group G0
D, then the weight-

zero part of Γ(Cn,Der(− logD)) is isomorphic to gD. It follows that the weight-zero part of
Γ(Cn,Ω1(logD)) is isomorphic to HomC(gD,C), and this isomorphism extends to an isomorphism

Γ(Cn,Ω•(logD))0 '
•∧

HomC(gD,C) (21)

where the left-hand side is the weight-zero subcomplex of the complex of global sections. Now

H∗(Γ(Cn,Ω•(logD))0
)
' Γ(Cn,Ω•(logD)) (22)
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by an argument which uses the Lie derivative with respect to the Euler vector field as a contracting
homotopy. Moreover if G0

D is reductive,

H∗( •∧
HomC(gD,C)

)
' H∗(G0

D; C). (23)

Since Cn rD is a finite quotient of the connected group G0
D,

H∗(G0
D) ' H∗(Cn rD; C). (24)

Putting (22), (23) and (24) together we conclude that the complex of global differential forms with
logarithmic poles along D calculates the cohomology of Cn rD; this is summarised by saying that
the global logarithmic comparison theorem (or GLCT for short) holds for D. A stronger (local as
well as global) version is known to hold if D is a locally weighted homogeneous free divisor ([5]).
GLCT was conjectured by Terao in [17] for all hyperplane arrangements.

Let d be a real Schur root of a quiver Q, and let D be the discriminant in Rep(Q,d). Then
P GlQ,d is reductive (it is a central quotient of a product of general linear groups). If (Red) holds
then we deduce that GLCT holds for D. Even if (Red) fails, (23) and (24) still hold, and so

H∗( •∧
HomC(gD,C)

)
' H∗(Rep(Q,d) rD; C). (25)

In particular the number of irreducible components of D, being equal to dim H1(Rep(Q,d)rD; C),
is dim H1

(∧• HomC(g,C)
)
. Since H1(gln(C)) = C, H1(GlQ,d) ' C|Q0|. Taking the quotient by Z0,

we reduce the dimension of H1 by 1; it follows that the number of irreducible components of D is
equal to |Q0| − 1, as mentioned earlier in our discussion of Schofield’s method.

9 Linear Free Divisors and Mirror Symmetry

Givental ([10]) and Barannikov ([2]), later complemented by Sabbah and Douai ([7]), described a
Frobenius structure on the base-space of the miniversal deformation of the function f(x1, . . ., xn+1) =
x1 + · · ·+xn+1 on the Milnor fibre, Xt, t 6= 0, of the normal crossing divisor X0 = {x1· · ·xn+1 = 0},
and showed that this structure is isomorphic to the natural Frobenius structure on the small quan-
tum cohomology of C Pn. Let g(x) = x1· · ·xn+1 be the equation of X0 and let Der(− log g) be the
OCn+1-module of vector fields annihilating g. The Jacobian algebra of f : Xt → C is the quotient

At(g) := Jf :X1 → C = C[x1, . . ., xn+1]/
(
df(Der(− log g) + (g − t)

)
, (26)

and is spanned by the 0’th, . . . , n’th powers of f . It is this algebra structure, and its deformations,
which are transferred to the tangent bundle of the base space by the Kodaira-Spencer map of the
deformation. When t = 0, the algebra defined by (26) becomes the classical cohomology of C Pn.

Let D0 = {h = 0} be a linear free divisor in Cn+1. Under a simple non-degeneracy hypothesis,
which holds, for example, if G0

D is reductive, for almost all linear functions f(x) =
∑

j ajxj the
family of algebras At(h) defined by replacing g in (26) by h, is isomorphic to the family {At(g)}.
Ignacio de Gegorio has shown that these give rise to the same F -manifold structures (as in [10],
[2], [7]) on the miniversal base-space of f : Dt → C for t 6= 0, and observes that, once again,
by including the case t = 0, we obtain a degeneration of this structure to the trivial (constant)
Frobenius structure on the classical cohomology of C Pn. We do not know whether the Frobenius
structure which presumably can be defined on the base space of f : Dt → C for t 6= 0 is also
isomorphic to that of [10], [2], [7].

Finally, let us recall that if Q is any quiver whose underlying graph is a tree then the dimension
vector d(1) taking the value 1 at each node is the smallest sincere real Schur root, and the resulting
discriminant in Rep(Q,d(1)) is a normal crossing divisor. We do not know whether, among the
Frobenius manifolds constructed by the procedure of the previous paragraph from the discriminants
associated with the other real Schur roots, we will find a reflection of the intricate combinatorial
universe of quiver representations.
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