Lien : Université d'Angers LAREMA Lien : CNRS

Prépublication n° 157

Laurent ÉVAIN

On the postulation of $s^d$ fat points in $\mathbb{P}^d$

In connection with his counter-example to the fourteenth problem of Hilbert, Nagata formulated a conjecture concerning the postulation of $r$ fat points of the same multiplicity in $\plp$ and proved it when $r$ is a square. Iarrobino formulated a similar conjecture in $\mathbb{P}^d$. We prove Iarrobino's conjecture when $r$ is a $d$-th power.

Mots Clés
Fat point ; postulation

Codes MSC
14C05 Parametrization (Chow and Hilbert schemes)
14H20 Singularities, local rings [See also 13Hxx, 14B05]
14H50 Plane and space curves

Fichiers (193 Ko), 00157.pdf (184 Ko)

Date d'enregistrement : 02 septembre 2002

[Accueil] [Autres publications]