Lien : Université d'Angers LAREMA Lien : CNRS

Prépublication n° 147


Jean-Pierre HENRY, Adam PARUSINSKI

Invariants of Bi-Lipschitz Equivalence of Real Analytic Functions

We construct an invariant of the bi-Lipschitz equivalence of analytic function germs $(\R^n,0)\to (\R,0)$ that varies continuously in many analytic families. This shows that the bi-Lipschitz equivalence of analytic function germs admits continuous moduli. For a germ $f$ the invariant is given in terms of the leading coefficients of the asymptotic expansions of $f$ along the sets where the size of $|x||grad \, f(x)|$ is comparable to the size of $|f(x)|$.

Mots Clés
Bi-lipschitz equivalence ; characteristic exponents ; polar curves

Codes MSC
32S15 Equisingularity (topological and analytic) [See also 14E15]
32S05 Local singularities [See also 14J17]
14H15 Families, moduli (analytic) [See also 30F10, 32Gxx]

Fichiers
00147.ps (371 Ko), 00147.pdf (126 Ko)

Date d'enregistrement : 22 avril 2002


[Accueil] [Autres publications]